
Tutorial 4:
Condor

John Watt, National e-Science Centre

Tutorials Timetable

allAssignment DemosFri 11am10

R.S.Example Systems (L)Tue 12pm10

O.A.OGSA-DAI (L)Fri 11am8

allQ & A SessionFri 11am7

J.J.Portals (L)Wed 12pm7

A.S.SAML/PERMIS (L)Tue 12pm7

J.W.CondorFri 11am6

J.W.Globus DevelopmentFri 11am5

J.W.Globus DevelopmentFri 11am4

J.W.Introduction to GlobusFri 11am3

StaffTopicDay/TimeWeek

What Is Condor?

a batch scheduling system
allows submission and processing of batch jobs

a cycle harvesting system
carries out computation when processor is idle

a workload management system
allows user to prioritise jobs etc

can be installed on desktop machines and
clusters too

What Is Condor?

Developed mainly at
Uni. Of Wisconsin,
USA

Free software
! Research tool

Binaries available
! No source

! Multi-platform

First version – 1988

~40 developers
! Staff AND students

http://www.cs.wisc.edu/condor

Condor

Condor converts collections of distributively owned
workstations and dedicated clusters into a
distributed high-throughput computing (HTC)
facility.

Condor manages both resources (machines) and
resource requests (jobs)

Condor has several unique mechanisms such as :

ClassAd Matchmaking

Process checkpoint/ restart / migration

Remote System Calls

Grid ‘Awareness’

Collection of Condor resources is known as a ‘pool’

Job Management

Managing a large number of jobs

You specify the jobs in a file and submit them to
Condor, which runs them all and keeps you
notified on their progress

Mechanisms to help you manage huge numbers
of jobs (1000’s), all the data, etc.

Condor can handle inter-job dependencies
(DAGMan)

Condor users can set job priorities

Condor administrators can set user priorities

Resource Types

Dedicated Resources:

Compute Clusters

Manages

Node monitoring, scheduling

Job launch, monitor & cleanup

Non-dedicated resources:

Desktop workstations in offices

Workstations in student labs

Non-dedicated resources are often idle ~70% of the
time!

Condor can effectively harness the otherwise wasted
compute cycles from non-dedicated resources

Condor Pool

A machine in a Condor pool can have several
roles:

Central Manager – coordinates all activity (only
one per pool), matches jobs with machines, keep
tab on status of pool etc.

Submit machine – users submit jobs here

Worker machine – runs jobs

These roles are implemented by specific
daemons…

Condor Master

Runs on ALL the machines ALL the time

Spawns all the other daemons
With monitoring and restart if any crash

Daemons reconfigured from the command
line

condor_on/condor_off
! Starts/stops a condor resource (but master still runs)

! Put –master switch to switch off master daemon

condor_reconfig
! Reconfigure and reload the master daemon

Central Manager can control daemons on
other pool nodes

Condor Schedd

Runs on all machines that can SUBMIT jobs

‘shadow’ process spawned by schedd

When job is submitted, the condor_shadow
daemon starts which monitors the job, controls
file I/O and handles remote calls

Schedd represents job requests to the pool

condor_rm – remove a job from the queue

condor_q – look at current queue

condor_submit – submit a job to the queue

Condor Startd

Runs on all machines that can RUN jobs

Startd advertises machines attributes to the
central manager

For subsequent job matching

Startd spawns a ‘starter’ process when sent
job

Sets up environment and runs job

starter communicates with shadow process on
submit machine

Note starter and shadow only exist for the lifetime
of the job

Condor Collector

Runs only on the Central Manager

Collects information about the pool

All other daemons in the pool report to the
collector periodically

ClassAds are advertised here

Collector is queried with the condor_status
command

condor_status –l - shows machine ClassAds

Condor_status summarises whether machine is
busy, idle, matched etc

Condor Negotiator

Runs only on the Central Manager

The ‘backbone’ of Condor

Negotiator responsible for job-to-machine
matching (ClassAd matching)

Queries the collector periodically for the status of
the Condor pool

Contacts the schedd daemon on each
machine with waiting job requests

And matches to resources which are suitable

Other Roles

Nodes in the pool can have one or more
roles depending on which combination of the
daemons are running

schedd + startd = can submit jobs and run jobs

schedd only = can submit jobs only

startd only = pure worker node, no job
submission

the central manager itself can also be a submit
machine and worker node but this is not
recommended

Condor Node Roles

Central Manager

master

collector

negotiator

schedd

startd

Submit-Only

master

schedd

Execute-Only

master

startd

Regular Node

schedd

startd

master

Regular Node

schedd

startd

master

Execute-Only

master

startd

ClassAds

Condor uses ClassAd Matchmaking to make
sure that work gets done within the
constraints of both users and owners.

Users (jobs) have constraints:

“I need an Alpha with 256 MB RAM”

Owners (machines) have constraints:

“Only run jobs when I am away from my desk and
never run jobs owned by John.”

Semi-structured data --- no fixed schema

Machine ClassAds

“The Job Centre”

Advertises machines resources to the pool

View with condor_status command

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

labpc-11.nesc LINUX INTEL Unclaimed Idle 0.000 495 0+02:05:04

labpc-12.nesc LINUX INTEL Unclaimed Idle 0.000 495 0+01:55:04

labpc-13.nesc LINUX INTEL Unclaimed Idle 0.000 495 0+01:00:05

labpc-14.nesc LINUX INTEL Unclaimed Idle 1.000 494 0+02:00:04

labpc-15.nesc LINUX INTEL Unclaimed Idle 0.000 494 0+00:05:04

labpc-16.nesc LINUX INTEL Unclaimed Idle 0.000 494 0+00:50:04

labpc-18.nesc LINUX INTEL Unclaimed Idle 0.000 494 0+01:20:04

labpc-2.nesc. LINUX INTEL Unclaimed Idle 0.000 494 0+02:15:04

labpc-20.nesc LINUX INTEL Claimed Busy 0.000 494 0+03:45:04

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/LINUX 9 0 1 8 0 0 0

 Total 9 0 1 8 0 0 0

Job ClassAds

Workers “Curriculum Vitae”

Advertises job’s requirements to the pool

View job status with condor_q

condor_q –long shows entire ClassAd

-- Submitter: labpc-12.nesc.gla.ac.uk : <130.209.58.162:43501> : labpc-

12.nesc.gla.ac.uk

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

200.1 jones 5/12 11:51 +00:41:20 R 0 7.1 executable.exe

0 jobs; 0 idle, 0 running, 0 held

Condor Configuration

A central config file maintains global config
parameters for the whole pool
/opt/condor-6.8.3/etc/condor_config

In addition, a local config file allows the
owner of the machine to set parameters that
override the global settings
/opt/condor-6.8.3/local.labpc-

12/condor_config.local

This allows user to stay firmly in control and
to not have Condor jobs swamp his machine

Local Configuration

Parameters can be set in the local config files that
make jobs run always and straight away
START = True

RANK =

SUSPEND = False

CONTINUE = True

PREEMPT = False

KILL = False

this sort of configuration means that jobs will run
even if the user is working – may cause performance
degradation
most suitable for cluster or quiet pool which mainly
runs jobs

Getting Started!

Choosing a “Universe” for your job

Just use VANILLA for tests

Will need JAVA for assignment…

Make your job “batch-ready”

Code preparation

Creating a ‘submit description’ file

Run condor_submit on your submit
description file

Condor Universes

A ‘Universe’ is an execution environment

Standard

Vanilla

MPI

Java

Globus etc…

use vanilla if no source code available

use standard if source code available

Provides checkpointing

Needs linked against condor libraries

Code Preparation

Must be able to run in the background

 no interactive input, windows, GUI, etc.

Can still use STDIN, STDOUT, and STDERR (the
keyboard and the screen)

but files are used for these instead of the actual
devices

Organize data files

We are NOT using a shared filesystem

So files and data will have to be moved about

Job Submission

Jobs are submitted by putting instructions
into a submit script and then executing

Example script:

universe = vanilla

executable = sh_loop

output = sh_loop.out

error = sh_loop.err

log = sh_loop.log

arguments = 60

should_transfer_files = IF_NEEDED

when_to_transfer_output = ON_EXIT

queue

condor_submit <scriptname>

condor_submit

You give condor_submit the name of the
submit file you have created

condor_submit parses the file, checks for
errors, and creates a “ClassAd” that
describes your job(s)

Sends your job’s ClassAd(s) and executable
to the condor schedd, which stores the job in
its queue

Atomic operation, two-phase commit

View the queue with condor_q

Clusters and Processes

If your submit file describes multiple jobs, we
call this a “cluster”

Each job within a cluster is called a
“process” or “proc”

If you only specify one job, you still get a
cluster, but it has only one process

A Condor “Job ID” is the cluster number, a
period, and the process number (“23.5”)

Process numbers always start at 0

condor_rm

If you want to remove a job from the Condor
queue, you use condor_rm

You can only remove jobs that you own (you
can’t run condor_rm on someone else’s jobs
unless you are root)

You can give specific job ID’s (cluster or
cluster.proc), or you can remove all of your
jobs with the “-a” option.

condor_history

Once your job completes, it will no longer
show up in condor_q

You can use:

condor_history

to view information about a completed job

The status field (“ST”) will have either a “C”
for “completed”, or an “X” if the job was
removed with condor_rm

Condor_prio

condor_prio allows you to specify the
order in which your jobs are started
Higher the prio #, the earlier the job will start

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1027> :

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 1.0 frieda 6/16 06:52 0+00:02:11 R 0 0.0 my_job

% condor_prio +5 1.0

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1027> :

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 1.0 frieda 6/16 06:52 0+00:02:13 R 5 0.0 my_job

Job Controls

Use condor_hold to place a job on hold

Kills job if currently running

Will not attempt to restart job until released

Use condor_release to remove a hold and
permit job to be scheduled again

Recommend using a logfile in your submit
description

Good for debug…

Sample Logfile

000 (8135.000.000) 05/25 19:10:03 Job submitted from host:

<128.105.146.14:1816>

...

001 (8135.000.000) 05/25 19:12:17 Job executing on host:

<128.105.165.131:1026>

...

005 (8135.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage

Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage

9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

...

The Standard Universe and
Checkpointing

Condor’s Process Checkpointing mechanism
saves all the state of a process into a
checkpoint file

Memory, CPU, I/O, etc.

The process can then be restarted from right

where it left off

Typically no changes to your job’s source
code needed

However…

condor_compile

You need to relink your job for submission to the
Standard Universe

To do this, just place condor_compile in front of
the command you normally use to link your job:

condor_compile gcc -o myjob myjob.c

OR

condor_compile f77 -o myjob filea.f fileb.f

OR

condor_compile make –f MyMakefile

Limitations of Standard Universe

Condor’s checkpointing is not at the kernel
level. Thus in the Standard Universe the job
may not

Fork()

Use kernel threads

Use some forms of IPC, such as pipes and shared
memory

Many typical scientific jobs are OK

WE WILL NOT NEED CHECKPOINTING!

The Java Universe

Condor supports Java applications
condor_submit java.cmd

Java.cmd:

universe java

executable Main.class

arguments Main arg1 InputFile arg2

output Outfile

error ErrFile

queue 6

The Java Universe

Can submit jobs in vanilla, but…

Java Universe provides more than just inserting
“java” at the start of the execute line

! Knows which machines have a JVM installed

! Knows the location, version, and performance of JVM on each

machine

! Provides more information about Java job completion than just JVM

exit code

– Program runs in a Java wrapper, allowing Condor to report

Java exceptions, etc.

condor_submit –java

! Shows Java supported nodes in your pool

Command Summary

condor_status View Pool
Status

condor_q View Job Queue

condor_submit Submit new
Jobs

condor_rm Remove Jobs

condor_prio Intra-User Prios

condor_history Completed
Job Info

condor_compile Link Condor library

Finally

Look in your $HOME/examples folder
There are several test applications for use with
Condor

Try running the sh_loop job…
! Try submitting multiple jobs

! Monitor them with condor_q, condor_status etc..

Next week – 3 tutorials
SAML/PERMIS

Portals

Q & A

