
Tutorial 3:
Globus Development

John Watt, National e-Science Centre

Tutorials Timetable

allAssignment DemosFri 11am10

R.S.Example Systems (L)Tue 12pm10

O.A.OGSA-DAI (L)Fri 11am8

allQ & A SessionFri 11am7

J.J.Portals (L)Wed 12pm7

A.S.SAML/PERMIS (L)Tue 12pm7

J.W.CondorFri 11am6

J.W.Globus DevelopmentFri 11am5

J.W.Globus DevelopmentFri 11am4

J.W.Introduction to GlobusFri 11am3

StaffTopicDay/TimeWeek

Recap

Last time we:
Described the composition of the container

Mentioned the usefulness of ‘stubs’

Examined the generic security infrastructure
 Certificates, grid-mapfile

Looked at the components of a WSDL file

Described the content of the deployment descriptor

This week we’ll look at implementation files, building
and deployment, then some advanced security

And then mark your Problem Set 3!

Exercise

Did anyone try comparing a proxy certificate
and a user certificate?

Two major points to notice:
 The Subject DN of the proxy certificate is different from your original

user certificate

– It has an extra random number appended to it

 More importantly, the ISSUER of your proxy certificate is not the
Certificate Authority, but it is YOUR ORIGINAL CERTIFICATE

– Actual proxy certificate holds three pieces of info
» Your Short-lived proxy certificate

» The proxy certificate’s private key

» The original certificate (acting as a root CA)

– Proxy’s private key can sign more copies of the proxy, hence
propagate your identity round the Grid…

Directory Structure

Correct directory structure is essential
We recommend you stick with the generic
structure

 Means little, if no, change to the build files/settings
$TUT_DIR/

schema/

org/

examples/

globus/
examples/

services/

clients/

build/

WSDL

WSDD & Implementation

stubs

Qnames

Yet another bespoke mappings file…
This lives in the same directory as your
implementation file

Provides a syntax for Java to refer to almost any
aspect of your service

Joins the service namespace and Resource
Property into one statement

QName for the ‘last_action’ Resource Property
(from last week) would be:

 {http://www.globus.org/namespaces/Our_Service}last_action

Implementation file

Service.java file

Headers
Define your package

package org.globus.services.OurService.impl

Grab the Java Remote Exception library
import java.rmi.RemoteException

Import standard Resource Property libraries

import org.globus.wsrf.ResourceProperties etc…

Import the service message stub files that Ant
created

import org.globus.services.stubs.OurService etc…

Implementation File

Java implementation code goes next

public class OurService implements Resource,
Resource Properties {

}

Service implements service operation and
resource (stateful part)
Require definitions of our WSDL Resource
Properties

private String do_it
private String last_action

Then implement the operations (app. dependent)

Security

Implemented by the Grid Security
Infrastructure (GSI)

Based on Public Key Cryptography

We have seen our credentials in the form of X.509
Digital Certificates

We have seen PROXY certificates created from
these credentials

 Proxies implement DELEGATION

 This allows your job to run on multiple resources without having to
read your private key each time

Mutual Authentication

Two sites A and B wish to identify each other

A B

Mutual Authentication

Two sites A and B wish to identify each other

A B

• A gives B their certificate

A

Mutual Authentication

Two sites A and B wish to identify each other

A B

• A gives B their certificate

• B checks that a trusted CA signed the certificate

A signed
by
CA?

Mutual Authentication

Two sites A and B wish to identify each other

A B

• A gives B their certificate

• B checks that a trusted CA signed the certificate

• B sends A a message to encrypt using A’s private key

blah blahblah blah

g3rtyuxvb

private
key

Mutual Authentication

Two sites A and B wish to identify each other

A B

• A gives B their certificate

• B checks that a trusted CA signed the certificate

• B sends A a message to encrypt using A’s private key

• A sends encrypted message back to B, B decrypts using A’s public key

g3rtyuxvb A
g3rtyuxvb

blah blah public key

Mutual Authentication

Two sites A and B wish to identify each other

A B

• A gives B their certificate

• B checks that a trusted CA signed the certificate

• B sends A a message to encrypt using A’s private key

• A sends encrypted message back to B, B decrypts using A’s public key

• If original message is retrieved, A and B are “mutually authenticated”

Types of Security

Remember our –nosec flag?
This tells the container not to implement
TRANSPORT security for its services

What does this mean?
GT4 can implement TRANSPORT and MESSAGE
level security

In general,
 TRANSPORT

– Everything in the HTTP transfer is encrypted/signed

 MESSAGE

– The message contained within the SOAP envelope is
encrypted/signed

Types of Security

GSISecureMessage
Based on WS-Security standard, good for few
messages

GSISecureConversation
Based on WS-SecureConversation spec., good for
many messages

Allows credential delegation (proxies)

GSITransport
Based on TLS/SSL

Most secure, but doesn’t support delegation

Types of Security

All the above schemes are not mutually
exclusive

A mixed bag…

All support encryption and signature
checking

ENCRYPTION
 Guarantees PRIVACY

 contents cannot be viewed by external agents

SIGNATURE
 Guarantees INTEGRITY

 Contents have not been manipulated by external agents

Securing a Service

Service requires a security descriptor
No change needed to any of your implementation

 Although some services add security logging to facilitate useful
debugging

<securityConfig xmlns="http://www.globus.org">
<authz value="none“/>

</securityConfig>

This tells any services referencing this security
descriptor that we don’t want any authorisation
done

 Options include: custom, grid-map, VOMS

Securing a Service

The only change we need to make is in the
service deployment descriptor (WSDD)

<parameter name="securityDescriptor"
value="etc/org_globus_services_security_Ou
rService/security-config-OurService.xml"/>

This line tells the service to reference the
security descriptor

Note that because the security descriptor doesn’t
say what kind of security mechanism it supports,
the client is free to choose how it connects

A Secure Client

We only need to add two lines to our client

((Stub)math)._setProperty(Constants.GSI_SEC
_CONV,Constants.ENCRYPTION);

((Stub)math)._setProperty(Constants.AUTHORI
ZATION,NoAuthorization.getInstance());

Here we are asking to use
GSISecureConversation using encryption and No
CLIENT-SIDE Authorisation

Hints and Tips

We DON’T recommend writing everything from the
start

Better to take an existing service and substitute your
service names etc..
WATCH THE DIRECTORIES

 Most problems come from
– Stubs not being pointed at properly
– Missing import links

Copy a version of helloworld/tutorial so you can
start from scratch again if you get lost
Always deploy your service as ‘globus’

If not you can end up with some directory permission
problems that prevent deployment

NO transport security is needed
Local containers should run with -nosec

Useful Links

GT4 Tutorial (The Sacred Text!)
http://gdp.globus.org/gt4-tutorial

Locally: $HOME/progtutorial.pdf

GT4 Components
http://www-unix.globus.org/toolkit/GT4Facts/

National Grid Service
http://www.grid-support.ac.uk/

You are already registered in their grid-mapfile…

Problem Set 3 Assessment

Next Week… Condor

