
Tutorial 2:
Globus Development

John Watt, National e-Science Centre

Tutorials Timetable

allAssignment DemosFri 11am10

R.S.Example Systems (L)Tue 12pm10

O.A.OGSA-DAI (L)Fri 11am8

allQ & A SessionFri 11am7

J.J.Portals (L)Wed 12pm7

A.S.SAML/PERMIS (L)Tue 12pm7

J.W.CondorFri 11am6

J.W.Globus DevelopmentFri 11am5

J.W.Globus DevelopmentFri 11am4

J.W.Introduction to GlobusFri 11am3

StaffTopicDay/TimeWeek

Several points…

Feel free to change your passwords!
User account already has quite strong passwords

Globus account is the same for everyone
 Globus account is low-privilege, but feel free to change password

Don’t power off your machine!
We run a Condor pool which runs while your machines are
idle

 More on this tool in tutorial 4

Just log out…

Set proxy in your user account for internet
Mozilla -> Edit -> Preferences -> Connection Settings

http://wwwcache.gla.ac.uk/glasgow.pac

Recap

Last time we:
Launched a GT4 Web Services container

Created a proxy certificate

Used a script to build a Web Service from constituent files
(.WSDL, .WSDD, .java)

Deployed this service in the container

Ran a simple client to invoke the service

This week, we’ll have a closer look at what we did
last week…

Will be referencing some security aspects from this week’s
lectures

The Container

Generic term for server-side applications

Comprises
An HTTP server for sending/receiving messages
over the internet (e.g. Apache)

An application server for hosting services (e.g.
Tomcat)

 Exposes our services to the internet through the HTTP server

A SOAP engine for manipulating SOAP messages
(e.g. Apache Axis)

 Interprets messages from the application server

Our Web Services

The Container

‘Container’ is started using
one command

globus-start-container
 Can take the ‘-nosec’ flag for no

transport security

 We will ALWAYS use no transport
security for OUR services (always
local)

 Without flag, services become HTTPS

Takes a while to run up…
 Just like Tomcat/JBoss, application

server initialises in a few seconds

HTTP Server

Application Server

SOAP engine

Web Service

Web Service

Web Service

Web Service

Web Service

The Container

A few tips…
Container runs as ‘globus’ user

 The user that installed the globus toolkit

Always start the container from
$GLOBUS_LOCATION

 Container may fail to start at all if it cannot locate directories relative
to the installation directory

Stop container with <Ctrl>-C
Ignore error messages from

 ReliableFileTransfer
 QueryAggregator

– These are unconfigured parts of Globus Toolkit complaining,
they don’t impact on any services we will be looking at

Certificates

Before running any services we typed
grid-proxy-init

 And we got some output…

Your identity: /C=UK/O=Grid/O=Training/OU=GUGridComputingCourse/CN=User12
Creating proxy .. Done
Your proxy is valid until: Thu Feb 1 23:08:00 2007

First line states your SUBJECT DN

Second line generates your proxy
 Automatic as we have turned off private key encryption

Third line states the validity of the short-lived
credential (12 hours default)

Certificates

Your certificates are stored in ~/.globus/
usercert.pem

 Your e-Science PKI public user certificate

userkey.pem
 Your e-Science PKI private key (notice permissions!)

/certificates/cb398b31.0

/certificates/cb398b31.signing_policy
 These files contain information about the CERTIFICATE

AUTHORITY that issued your e-Science certificate

– First is the CA ROOT CERTIFICATE

– Second is the Subject DN scope that this CA refers to
» Certificates outwith this policy cannot be verified here…

Certificates

grid-proxy-init creates a ‘proxy’ certificate
This is a short-lifetime certificate to restrict
damage should it be compromised
Stores it in /tmp/x509up_$UID

You can have a look inside any certificate you
own with:
openssl x509 –in <certificate> –noout –text

Exercise: Compare your proxy certificate and
your user certificate using this command.

 What TWO things in particular do you notice??

Certificates

Is all this necessary?
We turned off security in the container, didn’t we?

No! We only turned transport security off
 We still need to AUTHENTICATE to globus to run clients

But don’t we need server side authentication? We
didn’t do a grid-proxy-init for the container…

 Yes! But Globus does that automatically for us

Then where are the server side credentials?
 They are in /etc/grid-security
 Globus owns its certificate and key here

 And root CA details are stored in certificates/

grid-mapfile

There is something else in /etc/grid-
security of interest to us…

Run command:
more /etc/grid-security/grid-mapfile

You should see a line with your Certificate
Subject DN in inverted commas followed by your
user account

This file maps your identity to a local account that
your jobs will run in

 This is the AUTHORISATION step in GT4

 Is this a good way of doing this?

grid-mapfile issues

Imagine Tescos have a ‘grid-mapfile’ for their
loyal customers to get 10% off at their stores

Michael Balzary gets 10% off goods
James Jamerson gets 10% off goods
John-Paul Jones gets 10% off goods
Carole Kaye gets 10% off goods
Les Claypool gets 10% off goods
Kris Novoselic gets 10% off goods
John Wardle gets 10% off goods
Colin Greenwood gets 10% off goods
Etc.. Etc… etc… etc… etc……………

Mapping of privilege to user done at resource

grid-mapfile issues

This doesn’t happen. Tescos issue a ‘loyalty
card’ entitling user to 10% off goods

Mapping of privilege to user done at user

‘grid-mapfile’ would then look like:

Loyalty Card holder gets 10% off goods

The resource access control statement is only
one line, as opposed to a line for each user

This is Role Based Access Control (RBAC)
 RBAC is redefining how authorisation is done on the Grid

Web Services

Recall the constituents of our services
A WSDL document

A WSDD document

An implementation

Build settings/scripts

There is another constituent of Web Services that
we haven’t discussed

 This is because it is generated automatically for us

 The clue lies in the invocation command from last week:

java –classpath ./build/stubs/classes/:$CLASSPATH org.globus……

Stubs

Stubs perform SOAP interpretation on our
behalf

Imagine a simple Web Service invocation…
Web Service is located (Discovery process)

WSDL of service is read (Description)

At this point a CLIENT STUB will be generated
from the service WSDL (automatically if required)

 This will communicate with the Web Service via SOAP

This stub may be reused as many times as
needed

They save your application having to do message
encoding/decoding

Stubs

The server requires a stub too

The server stub is created when you build
your service

Stub is said to marshall or serialise the SOAP
requests for us

They are placed in the ./build/stubs directory

Client Server

S
T
U
B

S
T
U
B

Web
Service

Client
Program

HTTP(SOAP)

Stubs

Stubs are used to map your WSDL service
interface definition to your actual
implementation

WSDL contains no information about how your
service is implemented

 But the stubs do!

Enter the namespace.mappings file (in $TUT_DIR)

It maps WSDL namespaces to real stub classes

Note that stubs classes are generated AFTER you
build the service, so you have to be careful how
you construct this file!

WSDL

WSDL files describe the operations that a
service provides
Comprises:

A definitions element
A portType element
A messages element
A types element

Bindings element is generated automatically by
our build scripts
Services is defined in the deployment descriptor

WSDL

<definitions>
Root element of WSDL file

We are interested in ‘name’ and
‘targetNamespace’

 These define the name and targetNamespace of the WSDL file itself
(not the portType interface – this is later)

All the other attributes within the <definitions> tag
are required by every Web Service

 Some depend on which WSRF specs you wish to import into your
service i.e. WS-ResourceProperties, WS-ResourceLifetime

– You will never need any more than these two specs

 These are listed as <wsdl:import/> tags immediately after the
<definitions> tag

WSDL

<portType>
Defines our operations

Main tag has the name of the portType, a WSDL
pre-processor definition, and a
ServiceResourceProperties attribute (in <types>)

We also have <operation> tags
 These define which messages correspond to each operation

<operation name=“do_something”>
<input message=“tns:do_somethingInputMessage”/>
<output message=“tns:do_somethingOutputMessage”/>

</operation>

WSDL

<messages>
Defines the messages our operations will use
(which have been defined in the portType tag)

 Using the operation already defined, the
“do_somethingInputMessage” will contain the “do_it” element

 We only use single element ‘parts’

<message name=“do_somethingInputMessage”>
<part name=“parameters” element=“tns:do_it”/>

</message>
<message name=“do_somethingOutputMessage”>

<part name=“parameters” element=“tns:do_itResponse”/>
</message>

WSDL

<types>
Defines the response and request types
Declares the resource properties

 As required by the ServiceResourceProperties attribute in the portType
definition

Contains an <xsd:schema> tag (standard WSDL)

<xsd:element name=“do_it” type=“xsd:string”/> (do_it type)

<xsd:element name=“last_action” type=“xsd:string”/> (resource properties)
<xsd:element name=“ServiceResourceProperties”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=“tns:last_action” minOccurs=“1” maxOccurs=“1”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Web Service Addresses

When you start your container you get a
numbered list of services

These are all Web Services listed as URIs
(Uniform Resource Identifiers)

They look like normal Web addresses

But a Web Service needs to be invoked in a
certain way, so if you typed this URI into Mozilla
you wouldn’t see anything

 These URIs are for the use of OTHER SERVICES

 “Web PAGES for humans / Web SERVICES for computers”

http://130.209.58.100:8080/wsrf/core/services/MyService

Deployment

GT4 requires two pieces of information to
deploy your service in its container

A WSDD deployment descriptor

A JNDI deployment file

We won’t be using the functionality in the JNDI
file, but we need it defined (you will change the
service name in this file and nothing else)

The deployment descriptor contains publishing
information

WSDD

Contains standard namespace defs + a
<service> tag

<service name=“tutorial/Service”>
 This defines what the URI for this service will be

 It gets appended to the baseURL for the service

 So for example, if the baseURL was

http://130.209.58.100:8080/wsrf/services

 The service URI would become

http://130.209.58.100:8080/wsrf/services/tutorial/service

WSDD

Inside <service>:
A Parameter tag for className points at the class
which implements our service

<parameter name=“className”
value=“org.globus.services.Service.impl.Service”/>

A wsdlFile tag points to the NEW WSDL file
generated by the build script

<wsdlFile>schema/Service/Service_service.wsdl</wsdlFile>

 Note that this is NOT the WSDL file we wrote

Next Week

Service Implementation
This is where you program your Java service

We will look at the extras you need to include for
GT4 to understand your programming!

Problem Set 3 Assessment
The last 15 minutes of the tutorial we will come
round and check your simple calculator service is
working

You MUST be able to show your service
incrementing with each invocation

