Review and Future Directions

Grid Computing (M)

Lecture 20

Lecture Outline

- Aims and objectives
- Intended learning outcomes
- Review of lectured material
 - Background
 - Large scale systems architecture
 - Security
 - Resource management
 - Scalability and heterogeneity
 - Systems modelling and simulation
- Review of tutorial material
 - Globus, Condor, Permis, OGSA-DAI
- Future Directions in Grid Computing

Course Aims and Objectives

- To provide the participants with:
 - Detailed understanding of the key problems and issues that arise when attempting large-scale distributed computation, within organisations & across organisational boundaries
 - Insight into the architectural implications of Grid-scale computation
 - Awareness of current research issues in:
 - Grid architecture and infrastructure
 - Scalable distributed computation
 - Integration of applications across autonomous organisations
 - Practical experience of current Grid technologies and associated standards
 - Skills in utilising current Grid tools and technologies
 - Appreciation of the weaknesses of existing tools and technologies, and potential areas for improvement

Intended Learning Outcomes

- By the end of this module, participants should be able to:
 - Critically discuss and reason about large-scale distributed system architectures, infrastructures and technologies
 - Articulate research challenges in multi-organisational distributed computing, including Grid computing
 - Design and implement Grid computing applications using Globus or similar toolkits
 - Justify the applicability, or non-applicability, of Grid technologies for a specific application

Background Material

- Networking and communications
 - IP networks: routing, addressing,
 QoS, congestion, security
 - Transports: TCP, UDP, etc.
 - Sockets API
- Remote procedure calls
 - Java RMI as motivating example
 - Parameters, naming, exceptions
- Distributed systems architecture
 - Designing distributed algorithms
 - Performance and autonomy
- Mark up languages and XML
 - Well-formed & valid documents
 - DTDs, schemas and namespaces
- Web services
 - SOAP, WSDL, UDDI

Reference model for Grid Computing differs from the OSI model

Large Scale Systems Architecture

- Key concerns in grids:
 - Autonomy
 - Scalability
 - Heterogeneity
 - Security
 - Fault tolerance
- Traditional client-server model of grid computing

- Challenges and alternative architectures
 - Importance of naming and addressing architectures
 - Discovery and routing
 - Availability, robustness and coupling
 - Timing and ordering
 - Automatic parallelism

Peer-to-Peer Systems

- Peer-to-peer systems and distributed hash table algorithms
 - Deployment considerations
- New approaches to scalability, naming and object location
- OceanStore

Security

- Virtual organisations and the importance of grid security
 - Authentication, authorisation and accounting
 - Confidentiality, privacy
 - Integrity
 - Fabric management
 - Trust
- Public key infrastructure
 - Symmetric vs asymmetric cryptography; RSA
 - X.509 PKI model
- Policies and role based authorisation
 - Limitations of Globus security: Grid map file
 - Newer solutions e.g. Permis, SAML, Shibboleth

Resource Management: Principles

- Taxonomy and Survey of Grid Resource Management paper
 - Overall aims:
 - Scalability, responsiveness, fault-tolerance, stability
 - Site autonomy and security
 - Overall system architecture:
 - How to organise machines? Flat, hierarchical, cells
 - How to describe resources or operations on them?
 - How to name resources? Organize those names?
 - How to store and discover resource information?
 - How to schedule requests? Allocate jobs to resources?
- Examples:
 - WS-GRAM
 - Community Scheduler Framework

Resource Management: Scheduling

- Job scheduling and management
 - Outline technical problems
 - Effects of autonomy
- Load balancing
 - Resource provision and advertisement
 - Static and dynamic load balancing
 - Queuing models for job submission
 - Heavy tailed distributions
 - Job migration
 - Execution environments
 - Examples
- Workflow management
 - Survey + examples

- Static load balancing fundamentally a solved problem
 - Well developed theory and models
 - Many robust implementations
- Dynamic load balancing difficult
 - Basic problems solved; open issues remain; few implementations
- Grid computing systems currently address limited scope problems
 - No need for complex solutions
 - Likely to change in future: growth of parallelism

Resource Management: Fault Tolerance

- Reliability of a computational grid
- Failure modes
- Fault tolerance
 - Checkpoint and retry
 - Avoiding systematic software failures
 - Error detection
 - Damage confinement
 - Techniques for error recovery
 - Implications of scale and autonomy
 - Economics
- Other failure modes
 - Multi-organisational security
 - Reliable multicast data distribution

- Current grids make widespread use of checkpoint and restart of longrunning computational jobs
 - Protection from hardware failures
 - Minimal programmer effort
- More advanced techniques currently not widely used
 - Design diversity and security issues will become important to reliability as grids are used for more critical tasks
 - Reliable multicast protocols will be important as grid computing adopts peer-to-peer protocols, multicast

Resource Management: Economics

- Charging models
 - How to bill users?
 - Externalities and indirect costs
 - Cost and price
- Congestion charging
 - Theory of shadow pricing
 - Pricing multiple resources
 - Vickrey auction
 - Resource negotiation

Scalability and Heterogeneity

- What is scale? Why should I care?
- Four principal scale dimensions of interest:
 - Number of nodes
 - Size of distributed database
 - Size of objects
 - Communication delays
- General approaches to scaling
 - Move functionality into "leaves"
 - Partition problem into domains and introduce gateways
 - Caching
 - Asymptotic convergence
 - Smooth out control response
 - Paradigm shift

- Case studies:
 - DNS
 - Simple, clean, lightweight, relaxed
 - Partitioning of database; caching
 - FAST TCP
 - Problems due to large bandwidthdelay product networks
 - Limits of TCP congestion control
 - Problems with Grid-FTP
 - A better TCP: Vegas, FAST, etc.
 - Delay tolerant networking
 - Violate assumptions behind TCP
 - Paradigm shift: store-and-forward message switching; thin waist shifts from IP to Bundle Layer
 - Naming and addressing
 - Sensor networks and remote areas

Systems Modelling and Simulation

- Modelling
 - Disruptive, dangerous, expensive, impractical, ad-hoc, etc.
 - ...but essential!
- Simulation
 - E.g. ns2
 - Algorithmic abstraction of system
 - Discrete event simulation: pitfalls
- Analytical modelling
 - Mathematical model of system
 - Trivial Markov modelling example

- Measurements
 - Collection: passive, active, in-line
 - Analysis: on-line, off-line
 - Examples: repositories, p2pmon

Review of Tutorials

- The Globus toolkit (GT4)
- Grid services
 - Servers, WSDL, etc.
 - Client implementation using SOAP
- Globus security
 - X.509 certificates
 - Grid map file
 - GSI and the job start-up process
- Permis
 - Globus security call-out in SAML
 - Permis role-based access control
 - XML security policies

- Condor
 - Job advertisement
 - Job submission
 - Batch queuing system
- Grid portals
 - Portlets, etc.
 - GridSphere
- OGSA-DAI
 - XML-based queries across multiple databases
 - XSLT presentation transforms
- Example applications

Questions or Comments on Review?

Future Directions in Grid Computing?

- Vast and ongoing investment in computational grids
- Technology developing rapidly
 - Versions of Globus, Permis, Condor, etc., used ⇒ obsolete within months
- Two trends we can expect to see:
 - Ongoing convergence of grid services and web services
 - Globus and similar grid toolkits vanish; replaced by generic commercial(?) web services implementations
 - Fundamental concepts remain very similar
 - Grid security might live on has somewhat specialist needs or might be subsumed into industry standard security
 - Likely depends on deployment of thin-clients
 - Increasing use of peer-to-peer systems, sensor and delay tolerant networks
 - Heavy push in the computer science research community
 - Vastly more interesting grids can be developed; needs evangelism

Discussion on Future Directions?

The End...

• Tutorial on Friday: demonstration of programming assignments

• Exam format:

- Answer 1 mandatory wide ranging question; 2 out of 4 optional and more narrowly focussed questions
- Past papers on the web site

- No revision lecture
 - Email questions to appropriate lecturer

Please return module evaluation forms!