
SCALE and heterogeneity

Grid Computing (M)
Lecture 16

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

2

Case Study 2

Large delay-bandwidth product networks

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

3

The situation

• In Grid environments, access to distributed data is very
important

• Distributed scientific and engineering applications
require:
– Transfers of large amounts of data between storage systems
– Access to large amounts of data by many geographically

distributed applications and users for analysis, visualization etc
• What mechanisms do we have at our disposal?

– FTP: standard protocol that exploits TCP to move data files: get
and put commands for pull and push mode transfers

– HTTP: standard protocol for fetching files (pull mode) that was
designed for use with web content; layered over TCP

– Bulk transfer-specific protocols (SRB, BBFTP, …): specially
designed protocols for providing access to scientific data sets;
again, layered over TCP

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

4

The problem

• Core networks support high bandwidths edge-to-edge
[o(10 Gbit/sec)]. As the interconnection bandwidths for
end systems continues to grow (100 Mbit/sec previously,
1 Gbit/sec now, 10 Gbit/sec in the near future), users
expect to be able to exploit large portions of this
bandwidth

• For example, if there is a 1 Gbit/sec path end-to-end
available in hardware, a user should be able to consume
most of that bandwidth for a data transfer if there are
no other competing flows along the path.

• If the one-way delay along such a path is τ seconds and
the bandwidth along the path is β bits/sec, then the
delay-bandwidth product is τ x β bits – i.e. τ x β
unacknowledged bits can be in flight along the path

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

5

The problem (2)

• For example, assume that a 10 Gbit/sec path is available
end-to-end, and that the one-way delay is 0.4 seconds;
this means that 4 Gbits/500 MBytes of unacknowledged
data can be in transit between sender and receiver

• Each of the mechanisms on slide 3 transfers each file
over a single TCP flow; therefore, the file transfer
performance is dependent upon the steady-state, bulk
data flow characteristics of TCP

• Therefore, the primary question is whether TCP will
permit a single flow to exploit the full capacity of the
network in steady state

• And if not, how should we address the problem?

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

6

TCP

• Original goals of the TCP protocol
– Provide reliable end-to-end transmission of data
– Minimize the time required to transmit all of the data
– All of this is achieved by the end systems, w/o involvement from

the core routers
• How does it do this?

– During connection establishment, the receiver of the data
indicates the receive window for this flow – i.e. the number of
bytes that it can buffer

– Reliable transmission is achieved using a sliding window protocol
for flow control – i.e. after sending a window’s worth of data,
the sender must wait for an ACK from the receiver

– Each ACK indicates the number of the last contiguous byte in
the stream that was successfully received

– Upon receipt of an ACK, the sender is able to send more bytes
up to the window size

– Transmission time can be reduced if a larger window size is used

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

7

TCP (2)

• This particular approach caused congestion collapse of
the Internet at the end of the 1980’s:
– Senders were sending their bytes into the network as fast as

the receive window would allow
– Congestion would occur at some router, causing packets (bytes)

to be dropped
– Hosts would time out waiting for ACKs and then retransmit

their bytes, exacerbating the problem
• What’s missing?

– The senders were not determining the capacity available in the
network, thus overloading the network given the receive window
information from the receivers

– Note also that there was nothing in the original design that
indicated a requirement for fair sharing of the network
resources

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

8

TCP Congestion Control (1)

• Revised goals of the TCP protocol
– Provide reliable end-to-end transmission of data
– Enable fair sharing of network resources by multiple flows
– Minimize the time required to transmit all of the data on a

single flow commensurate with the fairness criterion
– Still achieved by end systems

• How can this be done?
– A sender must determine how many packets it can safely have in

transit given the available capacity in the network – i.e. the
congestion window

– As before, it uses the arrival of an ACK to signal that one of its
packets has left the network, and it can safely insert a new
packet into the network (this is known as self clocking)

– The difficulty is determining the available capacity in the first
place, and to change the congestion window over time as other
TCP flows come and go

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

9

TCP Congestion Control (2)

• Basics of TCP Congestion Control
– Must determine the congestion window, decreasing it when the

level of congestion in the network goes up and increasing it when
the congestion level goes down

– It turns out that the overall system will be stable if the
reduction in the congestion window upon congestion increase is
much more drastic than the increase in the window when the
congestion decreases

– It has been mathematically shown that stability is only attained
if the window changes conform to additive increase,
multiplicative decrease (AIMD) (it is a necessary condition)

– Simply put, at every time when the congestion window is
evaluated, if no additional congestion has been detected, then
the congestion window is increased by a fixed amount (additive
increase); if, on the other hand, additional congestion has been
detected, then the congestion window is halved (multiplicative
decrease)

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

10

TCP Congestion Control (3)

• The “slow start” aspect of the
protocol causes the congestion
window to grow exponentially
until congestion is detected

• In steady state, the
congestion window shows a
sawtooth behaviour over time

• How does the sender determine if the network is congested?
• ASSUMPTION: the primary reason that a packet is not delivered,

and that a timeout occurs, is that the packet was dropped due to
congestion; therefore missing ACKs (or duplicate ACKs) are
indicative of congestion

• How often does TCP adjust the congestion window? Once per round
trip time between sender and receiver.

Time

C
on

ge
st

io
n

W
in

do
w

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

11

So, what’s the problem?

• Recall that for a large delay-bandwidth product network, we could
have 500 MBytes of unacknowledged data between sender and
receiver; assuming 1000 byte packets, this means 500,000 packets
in transit

• The one-way delay was 0.4 seconds, which implies that the RTT is
0.8 seconds

• Now, assume that the window size reached 500,000 packets and a
loss was detected, so that the window size is reduced to 250,000

• At the rate of adding 1 packet to the window size for each 0.8
seconds, it will take over 55 hours for the window to get back to
500,000 again!

• During this entire time, the flow is using the network resources
sub-optimally!

• Bottom line – the congestion control protocol must drive the system
into a congested state to determine that congestion exists, and
then drastically reduces the window – optimal situation would be for
the window to be maintained just below the onset of congestion

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

12

Potential solutions – GRID FTP

• GRID FTP: a set of extensions to standard FTP that
uses multiple, parallel flows for transferring a single file
– i.e. Multiple TCP streams between a single source and

destination; the file to be transported is broken up into blocks
and distributed across the multiple streams

• Parallel data transfer require support for out-of-order
data delivery

• Extended block mode supports out-of-sequence data
delivery

• Extended block mode header

• Descriptor is used to indicate if this block is a EOD
marker, restart marker etc

Offset
64 bits

Byte Count
64 bits

Descriptor
8 bits

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

13

Potential solutions – GRID FTP (2)

• Does this solve the problem of exploiting the large delay-bandwidth
product?
– Instead of one flow trying to use up all of the network capacity, N

flows are each trying to use 1/N of the capacity
– If the N flows were at different stages of their steady-state

behaviour, then one would expect some to be near to Wmax while others
are near to Wmax/2, with others spread in between

– Unfortunately, all N flows are started at the same time, and essentially
synchronize their behaviour, so the anticipated averaging behaviour in
the previous point is unlikely

– Suppose that we have 10 flows; in a fair world, then each flow would
have 50,000 unacknowledged packets en route at the same time; if
congestion on one of these flows is detected, the window is reduced to
25,000 packets, and the flow will require 5.5 hours to get back to Wmax

– The congestion control mechanism still suffers from the same two
problems:

• It must drive the system into a congested state to detect congestion
• Its response to congestion is too drastic

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

14

TCP Vegas – smoother congestion response

• The traditional congestion control algorithm, called TCP Reno,
relies upon packet loss indications to trigger its control
response – i.e. it has too little information to be able to
PREDICT when the flow is likely to encounter congestion; it is
a reactive control mechanism

• If we can obtain additional information such that we can
PREDICT the onset of congestion, we should be able to avoid
the multiplicative decrease of the congestion window except
in very severe congestion situations

• TCP Vegas monitors the round trip delay experienced by
packets and their ACKs to provide this additional information
needed to proactively avoid congestion – the measure of
queueing delay

• In essence, Vegas attempts to keep the congestion window
just below the Wmax that would trigger packet loss and
multiplicative decrease of the congestion window

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

15

How does Vegas congestion avoidance work?

• A given flow’s BaseRTT is defined to be the RTT of a packet
when the flow is not congested

• Then the expected throughput is
Expected=WindowSize/BaseRTT

• Calculate the current actual sending rate as the number of
bytes transmitted between the time that a packet is sent and
its ACK is received divided by the RTT

• Difference = Expected – Actual; note that Difference ≥ 0
• Define two thresholds low < high, corresponding to having too

little/too much extra data in the network
• If Difference < low, increase the congestion window linearly

during the next RTT
• If Difference > high, decrease the congestion window linearly

during the next RTT
• Leave the window unchanged if low < Difference < high

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

16

So, does this solve the problem?

• It certainly avoids the
sawtooth behaviour in
steady state

• If congestion is detected,
though, it still performs
multiplicative decrease

Time

C
on

ge
st

io
n

W
in

do
w

• The effectiveness for exploiting large delay-bandwidth
product networks depends upon the choice of the parameters
low and high

• The additive increase to the window will still be too slow in
adjusting to large increases in available capacity

• In order to truly address the problem, one must consider the
flow-level design of the congestion avoidance algorithm to
achieve high utilization, low queueing delay and loss, fairness,
and stability

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

17

FAST TCP

• Several individuals have attempted to address this
problem by looking at the flow-level design:
– FAST TCP – California Institute of Technology
– HTCP – Hamilton Institute
– HSTCP – Cambridge University

• FAST TCP is essentially a variant of TCP Vegas that is
focused on high delay-bandwidth product networks

• FAST updates the congestion window according to the
following equation

w ← min { 2*w, (1 - γ)*w + γ *(BaseRTT/RTT*w + α)}

• where 0 < γ <= 1 and α is a positive protocol parameter
that determines the number of packets queued in
routers in equilibrium along the flow’s path

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

18

Characteristics of FAST TCP

• When the congestion window is very small relative to the
available capacity, it experiences multiplicative increase

• Once the window is within half of wmax, the window
grows by a weighted average of the current window, the
ratio of BaseRTT and current RTT, and the total
queueing capacity of the routers carrying the flow

• In particular, if BaseRTT/RTT ~ 1, then
w := min {2w, w + γ * α}

• If BaseRTT/RTT ~ 0, then
w := min {2w, w + γ*(α – w)}

• Efficacy of the mechanism depends upon good choices
for γ and α

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

19

How well does FAST work?

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

20

How well does FAST work?

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

21

Summary

• Effective utilization of high delay-bandwidth product
networks requires that the TCP congestion control algorithm
be able to PREDICT the onset of congestion in order to avoid
the multiplicative decrease required for stability

• A proactive congestion control algorithm needs additional
information beyond packet loss to do its job; packet loss
indications are already too late – i.e. congestion has already
occurred

• In order to avoid the slow growth of the congestion window
resulting from additive increase, FAST has introduced a
multiplicative increase aspect to its algorithm; this is
moderated by terms that depend upon the prediction of
onset of congestion

• FAST’s scalability has resulted from:
– Smooth out control response
– Paradigm shift

