
SCALE and heterogeneity

Grid Computing (M)
Lecture 15

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

2

Section Outline

• What is scale? Why should I care?
• Four principal scale dimensions of interest:

– Number of nodes
– Size of distributed database
– Size of objects
– Communication delays

• General approaches to issues of scale
– Move functionality into “leaves”
– Partition problem into domains and introduce gateways
– caching
– Asymptotic convergence
– Smooth out control response
– Paradigm shift

• Case studies
– DNS
– FAST TCP
– Delay-tolerant networking

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

3

Wikipedia on scale …

• Scale in the computing field is used as a verb.
• An algorithm, design, networking protocol, program, or other

system is said to scale if it is suitably efficient and practical when
applied to large situations (e.g. a large input data set or large
number of participating nodes in the case of a distributed system).
For example, the distributed nature of the Domain Name System
allows it to work efficiently even when all hosts on the worldwide
Internet are served, so it is said to "scale well".

• If the design fails when the quantity increases then it does not
scale. For example, some early P2P applications, such as
Gnutella, had scaling issues as each node broadcast its requests to
all peers. This means that the demand on each peer would in the
worst case increase in proportion with the total number of peers,
potentially quickly overrunning the peers' limited capacity. Other
P2P systems like BitTorrent scale well because demand on each
peer is independent of the total number of peers.

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

4

Move functionality into “leaves”

• Distributed applications are usually organized into hierarchical
structures, in which an entity at each level “controls” some
number of lower-level entities

• If higher-level entities must be involved in interactions between
lower-level entities, the scalability of the application is drastically
affected, as these higher-level entities represent concentration
points for multiple lower-level interactions

• Moving the responsibility/functionality into lower-levels
improves the ability for the system to scale

• e.g. delegation of naming authority to subdomains in DNS

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

5

Partition into domains and interact via
gateways
• Each algorithm is characterized by a particular complexity in

terms of messages transmitted, bandwidth consumed, etc.
• As such, there is usually some maximal scale to which the

algorithm can be applied before these overheads negatively affect
the chosen application

• If the problem to be addressed exceeds this maximal scale, a
possible solution is to break the problem into domains that do
NOT exceed the maximal size, and to construct some other
structure for interactions between the domains.

• e.g. flooding routing protocols, like OSPF or IS-IS, permit the
establishment of sub-regions in which the flooding protocols are
used, but use a non-flooding regime for interactions between the
sub-regions

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

6

Cacheing

• Many types of interactions in distributed applications exhibit
locality of reference – i.e. if a particular question has been asked
once, it is highly likely that it will be asked again in the near
future

• Caches are the mechanisms we use for enhancing the
performance of applications that exhibit such locality of reference

• Of course, there is no free lunch; we have simply moved the
complexity into cache coherency issues

• As long as the time scale over which the data (upon which the
caches are based) changes are significantly longer than the time
scale over which repeat queries will be posed, the cache hit rate
will justify the cache coherency overhead

• e.g. the many and varied caches used for WWW content

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

7

Asymptotic convergence

• 2-phase commit protocols for distributed database management
exhibits n2 complexity

• This has extremely poor scalability for large distributed databases
• Is it essential that a distributed database conform to ACID

properties?
• As with caching, if the time scale over which the data changes is

long relative to the time scale over which queries are made, the
data just has to be asymptotically convergent/consistent

• e.g. DNS’s zone update protocol

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

8

Smooth out control response

• Many distributed applications involve response to external events
• Often times, these responses are part of a closed control loop, in

which the system is attempting to maintain operation within a
certain performance regime.

• The algorithm that interprets the feedback must avoid making
rapid changes to the system, as these may lead the system to
instability; some form of hysteresis or other smoothing function
must be applied

• e.g. equation-based flow control of TCP Vegas and FAST TCP

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

9

Paradigm shift

• We are used to changing the complexity of an algorithm by
looking at the problem in a completely different way
– e.g. Heapsort vs Selection sort; paradigm shift involves doing comparisons

and exhanges over much larger distances on the dataset, thus yielding
nlog2n behaviour instead of n2

• Sometimes, scale issues simply require a complete rethink of how
to address the problem, as existing solutions at smaller scales
simply do not work

• e.g. delay-tolerant networking

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

10

Case Study 1

Domain Name System

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

11

DNS Data Model1

• DNS is a global, loosely consistent, delegated database
– delegated → contents are under local control
– loosely consistent → shared information (within constraints)

• does not need to match or be up-to-date
• operation is global with owners of “names” responsible for serving up their

own data
– data on the wire is binary
– domain names are case insensitive
– hostnames are restricted to a small character set (although IDN provides

standard encoding for names in non-US ASCII

1Much of this material taken from the DNS Tutorial at IETF-63 by Ólafur Gudmundsson and Peter Koch.

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

12

DNS Terms

• Domain name: any name represented in the DNS format
– a.b.example

• DNS label:
– each string between two “.” unless the dot is prefixed by \
– i.e. foo.bar is two labels, while foo\.bar is one label

• DNS zone:
– a set of names that are under the same authority
– e.g. example.com and ftp.example.com
– zones can be deeper than one label – e.g. gla.ac.uk

• Delegation:
– Transfer of authority for a domain

• gla.ac.uk is a delegation from ac.uk
• the former is typically termed the child and the latter is typically termed the

parent

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

13

More DNS Terms

• RR: a single Resource Record
• RRset: all RR’s of the same type at a name

– this constitutes the minimum transmission unit for the protocol

• TTL: the time a RRset can be cached/reused by non-authoritative
servers

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

14

DNS Elements

• Resolver
– stub: simple, only asks questions
– recursive: takes simple query and takes all necessary steps to obtain the full

answer

• Server
– authoritative: the servers that contain the zone file for a zone, one Primary

and one or more Secondaries
– caching: a recursive resolver that stores prior results and reuses them
– some perform both roles at the same time

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

15

DNS Communication Protocol

• Normal request response uses a UDP-based datagram protocol
with retransmissions

• Retry timer is configurable, typically 4 or 8 seconds
• Often, retries are extremely persistent
• Use a transaction ID field to disambiguate responses
• Key point: Application using DNS is typically decoupled from

the DNS resolver making recursive queries
• Zone transfers use TCP (bulk data, rather than RPC-style

communication)

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

16

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

17

DNS Operation

• DNS is a “lookup service”
– simple queries → simple answers
– no search!
– no “best fit” answers
– limited data expansion capability

• DNS zone is loaded on authoritative servers
– servers keep in sync using zone update protocol – asymptotic consistency

• DNS caches only store data for a “short” time
– defined by TTL on RRset

• a DNS resolver starts at the longest match for the QName in its
cache, and follows delegations until an answer or negative answer
is received
– DNS packets are small
– DNS transactions are fast if servers are reachable

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

18

How well does it scale2?

• The DNS has, with a few minor tweaks, worked well as the
Internet has grown over SIX orders of magnitude.

• DNS scales because of good NS-record caching, which partitions
the database
– alleviates load on root/TLD servers

• Hierarchy in the names is NOT the reason for DNS scalability
– the namespace is essentially flat in practice

• A-record (mapping domain name to IP address) caching is, to first
order, a non-contributor to scalability

• The zone update protocol enables the system to perform well
without having to suffer through ACID consistency overheads

2Some of this material taken from the presentation entitled “The Internet Domain Name System”
by H. Balakrishnan.

C
op

yr
ig

ht
 ©

20
06

 U
ni

ve
rs

ity
 o

f G
la

sg
ow

19

What have we learned about scale?

• Reasons for success of DNS
– Simple – queries consist of name, class, and type
– Clean – explicit transfer of authority

• parent is authoritative for existence of delegation
• child is authoritative for contents

– Lightweight – UDP used to transport queries and responses
– Relaxed consistency semantics via zone update protocol

• Scalability bottom line
– most important aspect contributing to scalability of DNS is the partitioning

of the database by delegation
– caching of NS records is critical for reducing traffic to root and TLD

servers, and as a result, the communication load on the WAN
– its relaxed consistency semantics enables multiple authoritative servers to

respond to queries in parallel

