
Resource Management (3)

Grid Computing (M)
Lecture 13

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Reliability of a computational grid
• Failure modes
• Fault tolerance

– Checkpoint and retry
– Avoiding systematic software failures

• Error detection
• Damage confinement
• Techniques for error recovery

– Implications of scale and autonomy
– Economics

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Reliability of a Computational Grid

• Grid computing ⇒ Large, multi-organisational, heterogeneous
distributed systems

• p(failure) ∝ size of system
• Failure is inevitable due to environmental issues

– Even if the software implementation is perfect; hardware is not
– Any sufficiently large system will exhibit partial failures

• Need to ensure consistent results in presence of failures
• Critical to understand failure and recovery modes

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Failure Modes

• What can fail?
– Processes
– Communication channels
– Storage devices
– ...

• How can it fail?
– Omission failure

• Fail-stop; clean halting failure, stays failed; detectable (e.g. closes connections)
• Crash; unclean halting failure, stays failed; not necessarily detectable
• Omission; message sent but vanishes

– Arbitrary failures
• Incorrect results, message corruption, intermittent lack of response

– Timing failure
• Results are late, fail to meet timing deadline

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Failure Modes

• All practical systems exhibit arbitrary failure modes
– Network may corrupt, delay, reorder, discard or duplicate packets
– Processes can generate incorrect or arbitrarily late answers

• Buffer, array bounds, or stack overflows
• Lack of synchronisation in multithreaded systems
• Incorrect algorithms
• Arithmetic overflows
• Infinite loops

– Storage may fail
• Disks may corrupt blocks
• File system may corrupt or lose data

– Processors or memory can fail
• Bugs in processor design/implementation
• Radiation (α-particle) damage to memory
• Electrical noise

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Fault Tolerance

• To build a robust computational grid, need to tolerate failures

• Several levels to this:
– How to tolerate partial failure within a node?

• Checkpoint and retry
• Atomic transactions and recovery blocks
• N-version programming
• Retransmission/repair of lost data

– How to tolerate partial failure of a distributed system?
• Checkpoint and retry
• Distributed transactions
• Two-phase commit

– Implications of autonomy

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Checkpoint and Retry

• Simplest approach: periodically checkpoint process state, retry
execution on failure
– Widely used in grids and cluster computing (e.g. condor)

[Details in last lecture]

• What does this protect against?
– Hardware failures? Yes
– Software failures? Maybe

• Does not protect against systematic failures in the process
– An incorrect algorithm will give same answer on retry
– A buffer will always overflow given the same input data

• Might protect against transient failures
– Synchronisation problems and race conditions, since timing will differ on retry
– Failures due to external component, when external component has recovered

• Need to avoid infinite retry loops
– Exponential back off with eventual timeout?

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Avoiding Systematic Failure

• How to protect against systematic failures?
• Run-time analysis of system correctness

– Error detection
– Damage confinement
– Error recovery
– Fault tolerance and continued service

• Must program defensively
– Use techniques from safety critical systems world to improve reliability,

availability and to validate correctness
– Currently unusual in grid computing

• More typical just to terminate faulty jobs
• But might be required in certain fields

– e.g. computational medical research, simulations for aircraft design

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Error Detection

• Environmental detection
– Illegal instruction, segmentation violation, floating point exception, array

bounds exception
– Trivial to detect with modern languages and operating systems

• Application detection – acceptance test for results
– Replication checks

• Different algorithms – should get the same answer
– Reversal checks

• If one-to-one relationship between input and output, reverse calculation and see
if you get the correct input based on the output

– Coding checks
• Error correction codes (e.g. parity, Reed-Solomon) can detect corrupt data

– Reasonableness checks
• Is the result within sensible bounds?
• assert() in C/Java; invariants, pre- and post-conditions in Eiffel
• E.g. a weather forecasting system predicting 900 m.p.h. winds is likely faulty

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Damage Confinement

• Once error detected, want to limit propagation
• Decompose system into atomic actions

– Succeed or fail; don’t expose partial results
– Needs a well-defined boundary of the action

• Lock any needed resources
• Perform calculation using only locked resources, local variables

– Easy to leak information, since no language support
– Difficult to ensure clean rollback of state on failure

• Unlock resources
– Widespread support in databases; little in general purpose systems

• Wide interest in Software Transactional Memory in Haskell community

– Same approach works across multiple hosts – a distributed transaction – if
there is distributed scheduler support to coordinate locking and/or rollback
between hosts

Atomic
Consistent
Isolated
Durable

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Two-phase Commit Protocols

• How to agree results of a distributed transaction?
• Nodes may fail at various points; messages may be lost

• Two-phase commit protocol:
1. The commit manager assembles solicits votes on result
2. Hosts reply with a local commit or abort message and wait

• Hosts that vote commit guarantee they can complete action at later date
3. The commit manager collects replies, decides on basis of vote
4. The commit manager propagates a global commit or abort to all nodes

• On receipt of message, nodes finalise state: commit or rollback and abort

• Eventually robust, provided all nodes use atomic actions, have
appropriate timeouts for recovery
• May need to retransmit messages on node failure/recovery

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Error Recovery

• Several approaches to error recovery once damage confined
– Erroneous computation:

• Rollback
• Recovery blocks
• N-version programming
• ...

– Erroneous data transfer:
• Forward error correction
• Reliable multicast
• ...

• Issues:
– Local vs. distributed systems
– Temporal vs. spatial recovery
– Coordination of tasks and agreeing on results

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Recovery Blocks

• Ensure correct computation by composing atomic actions into
recovery blocks

ensure <acceptance test>
by
 <primary module>
else by
 <alternate module>
else by
 ...
else
 error
end

(can simulate the concept using exceptions)

• Relies on ability to implement multiple algorithms
– Design and implementation diversity
– What if there is only one way of solving the problem?

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.
N-version Programming

• Alternative, but similar, approach: run the versions in parallel
– The versions can be identical: protect from hardware failure

• Typically used for real-time control systems (e.g. Airbus)
– Local coordination and voting

...but you have a massively parallel computational grid – use it!

Primary

Alternate 1

Alternate 2

Vote

Atomic action

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Reliable Multicast Protocols

• How to recover erroneous/missing data?
– Unicast retransmission using TCP well understood:

• Issues with scaling to large bandwidth-delay product networks
– [See “Scalability & Heterogeneity lectures” later in course]

• Issues with reliability of checksums for large transfers
– Between 1 packet in 1100 and 1 packet in 32000 fails TCP checksum due
– Roughly 1 packet in 16 million has undetectable error ⇒ error every 16 gigabytes
– [Stone and Partridge, “When the CRC and TCP Checksum Disagree”, ACM SIGCOMM 2000]

– Multicast repair more complex:
• How to request repair?

– How to avoid request storms?
– As group size increase p(some receiver loses packet x) → 1.0

• How to send retransmissions?
– How to avoid implosion?
– Error correcting codes useful; repair multiple errors with one packet

• Solution outline: multicast everything, use scalable back-off triggered on group
size/distance from requester

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Error Correcting Codes

1 1 1 0 0 0 1

0 0 1 1 0 1 0

Bit stream A

Bit stream B

1 1 0 1 0 1 1Parity code: A XOR B

1 1 1 0 0 0 1

1 1 0 1 0 1 1

Transmission loses B

0 0 1 1 0 1 0 Calculate parity to recover
B = A XOR (A XOR B)

Source data

Packetize

Data Data Data Data

FEC

FEC

Data encoded using FEC: n + k packets sent,
repair provided any set of n packets received

Parity (XOR) code simplest error correcting code.
Many others exist, with better repair capabilities.

Widely used in streaming media, in reliable
multicast, and in peer-to-peer systems (e.g.
used in OceanStore for robustness to loss of
some copies of each block)

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Fault Tolerance

• These techniques allow a large degree of fault tolerance
– High cost: programmer time; execution time and data overheads
– Cannot conceal all failures

• Can you continue service when part of the system fails and that
failure can’t be concealed?
– At what point do you stop trying to recover and fail?
– How much work can be salvaged when system fails?

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implications of Scale and Autonomy

• Implications of autonomy:
– Service providers want to hide problems
– Difficult to debug such distributed faults

• Traditional fault tolerance applied to grid computing systems:
– Checkpoint and restart widely used

• Relatively simple to implement
• Rollback to beginning of job can often be done transparently to application

– N-version programming relies on coordinated scheduling of multiple jobs,
communication for voting; requires high programmer effort

• More coordination than typically available in computational grids
– Recovery blocks require high programmer effort; uncommon

– Simple mechanisms widely used; more complex techniques available if
needed in future

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Economics of Fault Tolerance

• Is it worthwhile to implement fault tolerance?

• High programmer cost implementing recovery block or N-version
programming
– Require multiple algorithms and implementations
– Can easily triple amount of design and coding work needed
– Is that a good trade-off vs. debugging a single implementation?
– What is the best way to prove correctness of implementation?

• E.g. if grid computation is helping design a safety critical system, might want
multiple algorithms and implementations, in the way done for traditional real-
time safety critical systems design

• Checkpoint and restart cheap on programmer time
– But may need to buy more grid resources, for restarted jobs
– Although grid service provider might do this for free, to hide their failures!

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Reliability of a computational grid
• Failure modes
• Fault tolerance

– Checkpoint and retry
– Avoiding systematic software

failures
• Error detection
• Damage confinement
• Techniques for error recovery

– Implications of scale and autonomy
– Economics

• Current grids make widespread use
of checkpoint and restart of long-
running computational jobs
– Protection from hardware failures
– Minimal programmer effort

• More advanced techniques currently
not widely used
– Design diversity and security issues

will become important to reliability
as grids used for more critical tasks

– Reliable multicast protocols will be
important as grid computing adopts
peer-to-peer protocols, multicast

Reminder: lecture tomorrow in Maths 325; Friday and next week
tutorials in Kelvin Building, back in F121 on 27th February

