
Resource Management (2)

Grid Computing (M)
Lecture 12



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Job scheduling and management
– Outline technical problems
– Effects of autonomy

• Load balancing
– Resource provision and advertisement
– Static load balancing
– Dynamic load balancing
– Job migration
– Execution environments
– Examples



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Job Scheduling and Management in a Grid

• Grid computing applications typically follow two patterns:
– Distributed computation

• Exploring a large parameter space, repeating a task across a data set
– Large amounts of data, enormous need for computational cycles
– Master-worker model
– Embarrassingly parallel applications

• SETI@home, particle physics, bioinformatics, movie rendering
– Remote resource access

• Coordinating execution of small number of tasks, running
on distributed resources managed by diverse organizations

• Remote instrument access (scanning electron microscopes,
sensors, etc.), combining large database queries

• Need grid-aware scheduling algorithms to coordinate execution of
jobs across multiple sites
– Mostly large scale distributed computation

Much less
uncommon



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

The Job Scheduling Problem

• Job scheduling and management in a Grid is a wide-
area scheduling and resource management problem
– Discover remote resources
– Schedule jobs on resources
– Distribute the code and data
– Execute jobs
– Collect and collate results

• Desirable to hide details of the local infrastructure at
each site from the wide-area scheduler
– Decouple implementations

• Use an hourglass model with middleware to isolate
the wide-area scheduler from the local schedulers

Local schedulers

Wide-area schedulers
and resource brokers

Middleware

Hardware, software

Diverse applications



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• How to schedule jobs to run in parallel across a grid?
– Where to run jobs:

• Real time vs. non-real time
• Batch vs. interactive
• Load balancing
• Need for specific resources

– Co-allocating related jobs
– Execution environment
– Failure tolerance

• A standard scheduling problem...?

Select eligible resources

Job ready to execute

Make scheduling decision

Distribute code and data

Execute jobs

Retrieve results

Failure recovery Load balance

The Scheduling Problem



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• Politics and accounting
– Who pays? Who is allowed access? Why are resources shared?
– How to discover a resource sharing community exists? How to become a

member? What are the benefits and costs of membership?

• Additional technical issues:
– Load balancing
– Job migration
– Fault tolerance

• Why are these issues?
– Things may go wrong... for political, technical or financial reasons, and

force you to move a job
– You may wish to spread your risk or your costs
– You may wish to optimise performance

(all three assume resources are plentiful, possible to move jobs)

Effects of autonomy



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Load Balancing

• What is the problem?
– Assign jobs to resources (e.g. processors) such that no resource overloaded
– Redistribute jobs in the event of failure of a resource

• Issues
– How to identify and describe resources?
– How to identify current load on a resource?
– How to predict future load on a resource?
– How to identify patterns of resource usage?
– How to distribute or migrate jobs?

Question: how does organisational autonomy change the issues?



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Resource Provision

• As a resource provider, how much resource should you provide?
– Start from high level measures:

• Transactions per unit time, peak vs. sustained rate, etc.
• Political need to contribute, economics

– Work down to low level measures:
• CPU cycles, memory, disk, etc.

– Rules of thumb, informed by prior measurement and economics

• How to do capacity planning?
– What are the revenue and growth models?
– What are the constraints on growth and/or revenue?
– Economics and politics again...



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Resource Description and Advertisement

• How to advertise a resource and its load?
– Ontology for resource description
– What information to report?

• Low level metrics
– CPU, disk, memory usage, etc.

• High level metrics
– % peak capacity, mean waiting time, etc.

– How much detail to report?
• To what extent is it useful from a business perspective to report only

incomplete or aggregate metrics?
• What timescales to measure and to report over? Are they the same?

– How to advertise?
• Publish/subscribe
• Polling and caching
• Gossip and peer-to-peer protocols

Is the metric reported the
same as that used in the
planning process?



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Job Placement

• How to decide a good placement?
– Are the needed resources only available in one location?

• Place at that location
– Does the job need many resources? (compute cycles, memory, disk)

• Place on node with plentiful resources
– Does the job need to communicate? (communication patterns)

• Place near communication peers

• Static or dynamic placement?
– Static: simpler, but can’t easily correct mistakes/system imbalance
– Dynamic: more complex, migration overheads, ability to rebalance system



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Static Job Placement

• Typical supercomputing mechanism:
– Large computational jobs submitted to a batch queue

• Central queue runner task
– Queue serviced according to some constraints

• FIFO queue
• Priority queue
• Weighted fair queuing

– Job at head of queue assigned to resource for execution
• Large cluster of worker nodes

• Makes a single scheduling decision
– Use knowledge of static job parameters; current and predicted state of the

system load
– Does not move jobs after assigned to resource

• Requires predictable job pattern to ensure load balancing



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Static Job Placement: Queuing Models

• Model static scheduler as a simple queuing system
• Many well-formed analytic models for optimal performance

– Balance load across queues
– Optimise throughput
– Predict waiting time

• But: need statistical distribution of job sizes and inter-arrival
times; queue service discipline; speed at which jobs execute
– E.g. Poisson arrival processes likely

appropriate for many large systems

Jobs executing on
several resources

Job queue

Scheduler
Queuing discipline?
Execution speed?
Distribution of job arrivals?
Distribution of job sizes?

! 

P
n
(t) =

("t)n

n!
e
#"t



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Static Job Placement: Heavy Tails

• Unfortunately job sizes, execution times likely heavy tailed
– E.g. Pareto distribution
– Most jobs are small, but most of the work in the large jobs

• E.g. one study saw 80% of bytes in FTP traffic in largest 2% of transfers
– Makes analytic queuing models difficult

• E.g. mean execution time not typical; maths gets hard!
• Expectation paradox: longer we have executed, longer likely to execute

• Disrupts naïve models; few systems implement complex models

Poisson Heavy tailed



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Dynamic Job Placement

• Monitor dynamic system load; migrate jobs to rebalance if needed
– How to monitor?

• Within a cluster:
– Periodic polling of system load
– Alerts on node overload
– Failure checks for fault tolerance

• Across autonomous sites:
– Much higher monitoring overhead
– Sites may not allow monitoring, or provide only restricted information

– How to migrate?
• Need to move a running process from one node to another
• Likely an expensive operation

• Question: is dynamic migration needed if nodes are dedicated?



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Dynamic Job Placement

• Heavy tailed distributions can help dynamic migration:
– Expectation paradox: longer job has executed, longer it is likely to execute
– Most of the weight is in a few large jobs

• Implications:
– If a node is unbalanced and has jobs which have just started, assume will

finish soon ⇒ static load balancing will solve the imbalance
– If a node is unbalanced and has long running jobs, assume will run for

much longer ⇒ dynamic load balancing + migration appropriate

• If job sizes known to be heavy tailed, gives simple predictor to
mitigate overheads of job migration



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Job Migration

• To perform dynamic load balancing, must be able to migrate jobs
between nodes

• What type of jobs?
– Native processes (e.g. Unix processes)
– Virtual machine programs (e.g. Java, Python, etc.)

• Also any resources on which the jobs depend
– Data files (potentially very large)
– Shared memory, locks, semaphores, mutexes, etc
– Network connections and IPC channels
– Shared library code (*.dll, *.so, Java class libraries, etc.)



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Job Migration: Cutover Strategies

• How to move a job between systems?
– Checkpoint and eager cutover

• Freeze job, copy entire address space + other resources, migrate thread of
control, continue

• High initial cost, large pause during cutover
– Copy on reference, lazy cutover

• Freeze job, migrate minimal state and thread of control, continue and fault in
data + other resources when needed

• Low initial costs, high runtime overhead during lazy cutover
– Pre-copy with lazy cutover

• Copy entire address space + other resources while job running, freeze job,
migrate thread of control, continue and fault in dirty data + other resources
when needed

• High initial and runtime costs, but very short “freeze” time during cutover

(each requires varying degree of operating system support)



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Job Migration: Transparency

• Is a job aware that it’s being migrated?
– With a suitable virtual machine to hide machine dependencies, and an RMI

implementation, might be possible to migrate some objects transparently to
the remainder of the system

• Question: is this possible with Java?
– It is possible to checkpoint and transparently migrate standalone Unix or

Linux processes
• Question: how to checkpoint a Unix process? why the restriction to checkpoint

only standalone processes?

• Unless using checkpoint and eager cutover, will likely need to
proxies for objects, files, etc.
– Performance hit, but may be acceptable



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Execution environments

• Migrating jobs need a predictable execution environment
– Hardware differences: virtual machine languages like Java, C#, etc.
– Surprisingly hard to make a binary that’ll execute across different versions

of an operating system; need standard environment
• Binary compatibility and library versioning issues

– How to ensure code and data integrity and confidentiality?
• Don’t necessarily trust the host on which a job is running…
• Trusted computing environments very helpful here!

• Jobs need to access data and store results
– Cannot assume a shared file system
– Does the scheduler automatically distribute input files and collect results?

Is this done manually as part of the job?
– Does the job have access to a file system? All or part of it?

• How does constraining access to the file system affect ability to load shared
libraries? (e.g. the jail facility on FreeBSD)



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Condor

• Network batch queuing system for clusters and cycle-stealing
– Jobs have dispatch priority
– Facilities for ordered jobs and master-worker operation

• Automatically distributes code, data and retrieves results
– Uses trivial ClassAds to match jobs to resources

• Processor, memory, disk, operating system, programming language, owner
– Static assignment of jobs to resources

• Robustness via checkpoint and recovery
– Requires re-linking against a modified libc; lots of space for checkpoints
– Robust, but imposes considerable constraints

• No IPC; no alarms, timers or sleeping; single threaded; no mmap(); file locking
unreliable; files can’t be opened read/write; most platforms need static linking

• Limited security and sandboxing; trusted environment



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• OpenPBS http://www.openpbs.org/
• Sun N1 Grid Engine http://gridengine.sunsource.net/
• Xgrid http://www.apple.com/acg/xgrid/

More limited… generally perform job scheduling; leave job
management, data distribution, fault tolerance to the user

• In general:
– Security, authentication, authorisation and accounting neglected
– No real facilities for real-time jobs, resource reservation
– Limited robustness and distributed coordination facilities

• Question: why are real-world implementations so limited?

Example: Other Systems



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Summary

• Static load balancing fundamentally a solved problem
– Well developed theory, mathematical models
– Many robust implementations

• Could improve performance by leveraging more theory

• Dynamic load balancing difficult
– Basic problems solved; open issues remain
– Few implementations

• Grid computing systems currently addressing only limited scope
problems; no need for complex solutions
– Likely to change in future: growth of parallelism


