Grid Security (2)

Grid Computing (M)

Richard Sinnott

Grids in a nutshell... and the security consequences

- Could be argued that Grid all boils down to "dynamically" establishing and managing Virtual Organisations (VO)
 - Definition of VO:
 - <u>dynamic</u> collection of distributed resources shared by <u>dynamic</u> collection of users from one or more organizations

- VO technologies must scale
 - Dealing with potentially huge number of users, resources
 - Broad array of requirements from applications
 - Security, data management, high throughput computing...

Why are VOs important?

- Ability to <u>securely offer and access</u> dynamically changing distributed resources <u>in controlled manner</u> to dynamically changing groups of users
 - fundamental to way e-Science/e-Research undertaken

VO Practicalities

- VOs need rules/contracts (policies)
 - Who can do what, on what, in what context, ...
- Policies can be direct assertions/obligations/prohibitions on specific resources/users
 - Policies can be local to VO members/resources
 - e.g. user X from site A can have access to P% resource B on site C
 - (site C responsible for local policy autonomy!!!)
 - Policies can be on remote resources
 - users from site A can access / download data Y from site B provided they do not make it available outside of site A
 - ...site B trusts site A to ensure this is the case
 - » and possibly to ensure that the security is comparable with site B
 - » ... trust!!!

VO Global Policy Options

- Policies can be global across the VO
 - Compute load across VO should be balanced between all resources
 - Implies
 - scheduling
 - job management
 - accounting
 - agreed by all VO members
 - Policy aims to try to keep steady state of resource usage
 - May include actions to be taken to maintain desired state
 - » e.g. if any site is performing less than 25% of the work of other sites, new jobs will be scheduled on that site until the workload is balanced
 - Any user using more than 25% of total VO resources have their future jobs not accepted until below this limit
 - Difficult distributed job management
 - What if nobody else using resources and user has large job?
 - What if policies not explicitly defined, implicit, not implementable, ...?
 - Promise you won't make this data public?

VO Global Policy Options

- VO members agree to share resources
 - "Give what you can when you can..." type policy
 - Good will and trust!
 - Easiest to achieve
 - Are we happy that others use our large resource and we get access to their smaller resource?
 - What if we are always busy? They are always free?
 - "Resource usage divided equally among VO members/organisations"
 - How do we measure resource use across VO?
 - Centralised interface (broker) through which all requests flow?
 - » Performance?
 - Job monitoring?
 - » Number of jobs completed? Time processing? Disks used?
 - » Monitoring all jobs, some jobs, jobs per user/per project/per site/per VO...
 - "Get what you give ..." type policy
 - Each VO member/organisation receives credit equivalent to the resource utilisation they provide to other users
 - » What is unit of accounting?

VO Policy Issues

- Type and quality of resources vary
 - How do we compare different processors?
 - A 2 day job on a PC with PIII processor and 2GB RAM might complete in 5 minutes on a IBM P690 Regatta Server with 2TB RAM
 - How do we compare processors to disks to IO characteristics to available network at that resource site to …?
 - A 1 day job mining data in flat text files could be done in seconds if the data was indexed and in a DB
 - Often cannot be decided until know exact nature of jobs themselves
 - Some jobs lot more IO intensive
 - Some jobs require inter-process communication
 - Some jobs designed for specific hardware infrastructure, others more generic
 - Some jobs need to move lots of data to/from resource

Policy Considerations

- Do we always want to make such detailed agreements
 - Do we know before setting up VO exactly what policies will be/should be?
- Can we adapt to changing conditions?
- When should the VO take action to enforce it's policy?
 - Always for everything
 - Performance?
 - First violation (trust broken)
 - Sometimes based on statistical averaging of resource usage
- What action should the VO take?
 - Warn/cut-off
 - Demand more access to resources?
 - Restrict access to resources?
 - Remove user/resource from VO
 - Trust broken
 - Redirection
- What if policy violation beyond control of VO partner?
 - network failure, snooper accessing data in transit between sites

VO Consequences

- Members/organizations need to know what will be expected of them before they join VO and what it means to allow someone/some site to join their VO
 - ...and consequences of what happens if they don't meet the agreements
- Individual sites trusted to implement the agreed policy
 - If some sites do not conform to policy (or violate) policy?
 - Security ramifications...?
 - Weakest link can affect all others!
 - » Totally secure supercomputing facility allowing access to scientist with own PC in remote location
 - » How do we know they are taking adequate security precautions?
 - Legal impact,
 - » e.g. Data protection act
 - Loss of trust
 - **–** ...
 - Increased load on other resources

Technologies for VO

- How does Grid technology meet these challenges?
 - Key that we need way to describe, implement and check/enforce policies
- Should be done at many levels
 - Abstract level to capture overall agreements
 - How best to describe resources, actions, people, ...?
 - Design level to ensure that specific points where decisions needed are identified
 - Is there a generic way to achieve this...?
 - Implementation level to ensure that agreements/policies enforced in right places
 - Need to implement collections of rules that can be easily enforced across a variety of end systems

Technologies for VO

- Historically expression of policies not fine grained with Grid toolkits, e.g. Globus
 - For example policies on security based on PKI (previous lecture) and GSI (explored in lab)
 - Globus uses grid mapfile
 - "/C=UK/O=eScience/OU=Glasgow/L=Compserv/CN=john watt" jwatt
 - "/C=UK/O=eScience/OU=Glasgow/L=Compserv/CN=richard sinnott" ros
 - **–** ...
 - Users have X.509 certificates which are used to support PKI (single sign on)
 - Applications can check that invoker has appropriate credentials to invoke service
 - i.e. I know that the person with this certificate is registered in my grid mapfile
 - » provides for authentication but need finer grain security (rules/policies)
 - » i.e. authorisation

Authorization Technologies for VO

- Various technologies for authorization including
 - PERMIS
 - PrivilEge and Role Management Infrastructure Standards Validation
 - http://www.permis.org
 - Community Authorisation Service
 - http://www.globus.org/security/CAS/
 - AKENTI
 - http://www-itg.lbl.giv/security/akenti
 - CARDEA
 - http://www.nas.nasa.gov/Research/Reports/Techreports/2003/nas-03-020-abstract.html
 - VOMS
 - http://hep-project-grid-scg.web.cern.ch/hep-project-grid-scg/voms.html
 - All of them predominantly work at the local policy level

Standards for Generic Authorisation

Generic way to achieve authorisation defined in X.812 ISO 10181-3 Access Control Framework

Grid APIs for Generic Authorisation

- Global Grid Forum (GGF) SAML AuthZ specification provides generic AEF approach for ALL Grid services
 - ... or at least all GT3.3+ based services

- PDP application specific
 - Previous assignments have looked at PERMIS in detail (not this time!)
 - Default behaviour is if not explicitly granted by policy, then rejected

Role Based Access Controls

- Need to be able to express and enforce policies
 - Common approach is role based authorisation infrastructures
 - PERMIS, CAS, ...
- Basic idea is to define:
 - <u>roles</u> applicable to specific VO
 - roles often hierarchical
 - Role $X \ge Role Y \ge Role Z$
 - Manager can do everything (and more) than an employee can do who can do everything (and more) than a trainee can do
 - <u>actions</u> allowed/not allowed for VO members
 - <u>resources</u> comprising VO infrastructure (computers, data resources etc)
- A policy then consists of sets of these rules
 - { Role x Action x Target }
 - Can user with VO role X invoke service Y on resource Z?
 - Policy itself can be represented in many ways,
 - e.g. XML document, SAML, XACML, ...

RBAC Policy Components

- Subject Policy
 - Specifies subject domains, e.g. dcs.gla.ac.uk
- Role Hierarchy Policy
 - Specifies hierarchy of role values, e.g. VO scientist, sys-admin
- SOA Policy
 - Specifies who is trusted to issue ACs (typically local sys-admin)
- Role Assignment Policy
 - Says which roles can be given to which subjects by which SOAs, with which validity times and whether delegation is allowed (depends on VO)
- Target Policy
 - Specifies the target domains covered by this policy (e.g. Grid services)
- Action Policy
 - Specifies the actions (methods/operations on Grid services) supported by the targets
- Target Access Policy
 - Specifies which roles are needed to access which targets for which actions, and under what conditions

PERMIS Based Authorisation

• PERMIS Policies created with PERMIS PolicyEditor (output is XML based policy)

- Other PERMIS tools then used to sign policies
 - Associates roles with specific users
 - Policies stored as attribute certificates in LDAP server

Things for the future...

- Major WS-* efforts on many fronts
 - These range from proposal ideas, partial/full specifications, actual implementations (WS-Security)
 - Whole area driven by commercial players/politics
 - » WS-Notifications vs WS-Eventing
 - » WS-ReliableMessaging vs WS-Reliability
 - » WS-Orchestration vs WS-Co-ordination vs WS-Choreography
 - » WSFL vs BPEL vs …
 - » "WS-make me a cup of tea" vs "WS-make me a cup of coffee"
 - XACML (eXtensible Access Control MarkUp Language)
 - Richer possibilities for policy expression
 - Tools, complexity, ...

Introducing Shibboleth

• Shibboleth (http://shibboleth.internet2.edu)

Definition

Shibboleth [Hebrew for an ear of corn, or a stream or flood]

- 1. A word which was made the criterion by which to distinguish the *Ephraimites* from the *Gileadites*. The *Ephraimites*, not being able to pronounce sh, called the word sibboleth. See --Judges xii.
- 2. Hence, the criterion, test, or watchword of a party; a party cry or pet phrase.]
- Shibboleth will replace Athens as access mgt system across UK academia
 - UK federation went live on 30th November 2006
- Federations based on trust
 - or more accurately trust but verify
 - numerous international federations exist MAMS, SWITCH, HAKA, ...

Typical Shibboleth Scenario

It's a start, but...

- Benefit from local authentication but really want finer grained control...
 - I know you have authenticated, but I need to know that you have sufficient/correct privileges to access my VO resources
 - can also return various other information needed to support <u>authorisation</u> decisions

Finer Grained Shibboleth Scenario

Ok, but...

- I can do authorisation but I want single-sign on to lots of distributed resources across my VO (or VOs)
 - Browser allows to keep session information so can access other resources without signing in again
 - Provided authorisation information valid for different service providers
 - Each service provider completely autonomous
 - Can configure attribute release/attribute acceptance policies per identity provider/service provider

Shibboleth issues...

- Federations are quite rigid/static and not in true dynamic Grid vision
 - Ok for some domains (e.g. clinical) where we don't really want truly dynamic Grids and you will hopefully never find new data/resources "on-the-fly"
- Federations and users must all pre-agree on security attributes (and their values)
 - Can enforce things like you can only use this service if you have a license for the software at your home site
 - Only users with role of "Glasgow Royal Infirmary consultant" can access this service/data set
 - eduPerson attributes being explored and various others on larger scale
 - Policies on attribute release, attribute negotiation etc all being worked on

Putting the "Dy" in DyVOSE

Dynamic PMI Case Study

Shibboleth issues ...ctd

- Trust underpins Shibboleth/Grids
 - What if remote site does not treat authentication as seriously as it should?

- University of Glasgow used to have
 - Multiple usernames/passwords for staff students
 - Now moved to single unified account management system based on Novell nSure active directory technology
 - Identity management based on
 - Human Resources information for staff
 - Registry for students
 - Based on this have Shib-enabled numerous non-Grid resources
 - WebSurf
 - » Student/staff service, e.g. courses registered, credits earned etc
 - Moodle
 - » Glasgow virtual e-learning environment
 - Various others

Conclusions

- VOs crucial to Grids
 - Must overcome limitations of PKI scalability, security
- Need way to express rules/policies
 - How detailed?
 - How dynamic?
 - What about performance...?
- Standards and specifications/implementations being put together
 - GGF AuthZ works
 - (but requires authZ/Grid technologies to implement it)
- Clear need for more experiences applying technologies
- Shibboleth is definitely coming and will influence how we interact with Grids and VOs in the future
 - At NeSC Glasgow we were first showing how to access Grids via Shibboleth technologies... hurrah!
 - We'll see these things in action later in Example Applications Lecture