Large Scale Systems Architecture

(2)

Grid Computing (M)
Lecture 8

UNIVERSITY (&5
of
GLASGOW o\

Lecture Outline

* The distributed hash table abstraction
— Chord
— Tapestry

« Example systems

— Distributed file system: OceanStore

— Event notification

Deployment considerations
— NAT

— Firewalls

Future venues:
— Tutorials take place in Kelvin Building, room 246B, starting on Friday

— Future lectures take place in F121, Lilybank Gardens, except 14 February,
when Maths 325 will be used

A Distributed Hash Table (DHT)

A classical hash table efficiently
returns a value given a name

— Passes name through a hash
function mapping it to a fixed
bucket address

» Choice of hash function important,
to evenly distribute keys to buckets

— Iterate through items in the bucket
to find value corresponding to the
key; return that value

— Space-time trade off to determine
number and size of buckets

A distributed hash table hashes the
name to map it to a sost

— Potentially flat unstructured names;
location encoded via hash function
— Iterate from host to locate object

* Relies on a structured network
protocol to point to the next host

Key Properties of a DHT

» Keys are unstructured
— No need for hierarchical names

— Works with any sort of data

Data 1s distributed using a structured protocol

— Each node responsible for a portion of the data space

Queries are routed efficiently

No central server or control
— No node has global state

— No node has a special position
— Relies on hash function to provide implicit global knowledge

DHT Examples

 Many examples of DHT 1n the literature, trying to formalize the
structure of peer-to-peer name resolution

— Compared to the many unstructured file-trading systems with ad-hoc name
lookup, flooding or centralized schemes

— Aiming to develop systems that can be reasoned about; have known lookup
latency, state requirements, etc.

 Two representative examples:
— Chord [http://pdos.csail.mit.edu/chord/]
— Tapestry [http://www.cs.ucsb.edu/~ravenben/tapestry/download/tapestry-2.0.1.tar.gz]

— Will show basic routing algorithm for each
 Details in the papers referenced on final slide

— Each 1s a structured peer-to-peer system; but with very different structure

Chord

« A scalable distributed name lookup protocol
— Lookup(key) — IP address

— Provides an efficient lookup service, but does not store data
* The Chord library will tell you where a key should be located

» The application using Chord is responsible for storing the data at the specified
location, and for contacting the returned location to retrieve data after lookup

e One of the first structured DHT algorithms

— Relatively simple protocol; predictable behaviour
— Widely studied with known properties
— Representative of a large class of similar algorithms
e Pastry
 Bamboo a.k.a. OpenDHT [http://bamboo-dht.org/]

 Kademlia
— Overnet, eDonkey, tracker-less BitTorrent, etc.

Chord: Basic Structure

* A structured distributed hash table

— Nodes and keys identified by hash value:
* Node ID is hash of IP address

« Key ID is hash of key 1/8
» Both share the same numeric space
— 160 bit SHA-1 hashes 116
— Flat, uniform, namespace 1/13%4
— N nodes arranged in a virtual ring 1/128

» Hash values under arithmetic modulo N
» Links to neighbour nodes and O(/og(N)) other nodes

— Links to nodes placed '/,, !/,, /¢, !/, ... way around the ring

— More links to nodes with similar node ID
— The “finger table”

— Each node manages all keys with key ID less than its node ID, but
greater than the previous node’s ID, modulo N

Chord: Key Lookup

Nodes maintain a routing table:
— (Node ID, IP address) for each link
» Each hop routes queries along the link

to the node with the greatest node 1D
less than key hash (modulo N)

— Each hop halves the distance - in the
hash space - to the node with the key

— Eventually, successor node owns the
key, so pass to successor

» Reaches destination in O(log N) hops

— Efficient in terms of hop count

— Makes no attempt to minimize network
distance covered by each hop

10

110 19

20

99
32

80

60

» Robust to node failures or incorrect finger tables

— Simply choose a different (longer) path around ring

Chord: Maintenance

* Nodes may join, leave or fail at any time

« Behaviour on joining:

Join:

1. Contract bootstrap node; lookup own ID to get successor node
2. Link with neighbouring nodes; initialise own finger table

3. Transfer ownership of keys from successor

4. Update finger tables of existing nodes

Race conditions with concurrent joins
can cause slow lookup, or occasional
« Each node’s successor is correctly maintained transient failure

— For correctness, must ensure that at all times:

» For every key &, node successor(k) is responsible for k

— Desirable finger tables are correct, to improve lookup speed

« Behaviour on leaving:

Leave: Lol
i . Failure - unplanned leave -
1. Transfer ownership of keys to successor .
) - . . handled by replicating keys
2. Unlink from neighbouring nodes :

* Periodic stabilization algorithm runs to check successor and predecessor links
and update finger tables

Chord: Discussion

e Chord works well for stable, long-lived systems, where lookup
latency 1s not time critical:

— Nodes close in the ring not necessarily close in the network
» Relatively large lookup latency, even though number of hops low

— Churn 1s a significant problem
» Large peer-to-peer networks exhibit frequent joins and leaves (“‘churn™)
» System never reaches equilibrium given sufficient churn
* Incorrect finger tables cause Chord to perform a linear search
» Leads to excessive lookup times and transient failures

* Many extensions/variants developed to address these 1ssues, at the
expense of considerable extra complexity
— Bamboo and Kademlia best developed in the Chord family

Tapestry

« A distributed object location and routing protocol

— High-performance, scalable, location independent routing of message to
nearby copies of an object, O,

— Supports multiple applications, 4,, running on nodes, N

— More extensive API than Chord: Publishobject(o,, a,,)
UnpublishObject (0., A4,,)
RouteToObject (O,, A,,)
RouteToNode (N, A,,, Exact?)

* A 2nd generation peer-to-peer system
— More complex and feature-full than Chord

— Lower latency and less sensitive to churn

Tapestry: Basic Structure

* Nodes and objects share a flat namespace
— 160 bit SHA-1 hash expressed as 40 digit hexadecimal identifier

» Radix of the system, b = 16, a key parameter

* Nodes arranged 1n a highly connected mesh

— Each node has a neighbour map for each prefix of its node identifier
» Each map contains entries for b nodes (= total 40 x 16 = 640 routing entries)

Prefix length 4
Prefix length 3
Prefix length 2
Prefix length 1
Prefix length O

* The ith entry in the jth map is a bidirectional link to the closest node with an

identifier that begins prefix(N,j- 1) + “i”

» Example:
_—

— Consider nodes with 5 digit identifiers; the 9th entry in the 4th ﬁ p forgpode

325AE is a pointer to the closest node with an identifier that egin@9

4th map = prefix length 3

325A0"325A1"325A2"325A3"325A4"325A5"325A6"325A7"325A8"3b5 325AA

325AB"325AC"325AD"325AE"325AF

3250*"3251*"3252*"3253*"3254*"3255*"3256*"3257*"3258*"3259*"325A*

325B*"325C*"325D*"325E*"325F*

320**"321**"322**"323**"324**"325**"326**"327**"328**"329**"@2A**

328%+(|32C* 32D% || 32 ¥+ | 3254+

1

30***"31***"32***"33***"34***"35***"36***"37***"38***"39***"%A***

3B***"3C***"3D***"3E***"3F***

Vs
P
N — "
7
—

0****||1****||2****||3****||4****||5****|| 6****"7****"8****" 9****||A****

B****"C****"D****"E****"F****

Node pointers
(not all shown)

Tapestry: Routing

* Routes to the closest neighbour with
longest match to the desired address, @
digit-by-digit
— 1290 => 4*** => 43%* => 43F* => 43FE
— Can match several digits in one hop, when
there 1s a matching neighbour

— Reaches destination in at most /og, N hops
* 40 hops for N=210and b= 16

« Efficient topology based routing to objects

— In addition to closest neighbour matching prefix,
redundant links to further matching neighbours

exist for robustness

Tapestry: Maintenance

« Nodes may join at any time:

Node N joins:

1. Need-to-know nodes are notified of N, because N fills
a null entry in their routing table
0 Uses directed multicast to find all nodes matching

the common prefix of N and S (where S was the node
previously responsible for node ID N)

0 Those nodes add N as a neighbour, if necessary

2. Node N might become the new object root for existing
objects; need to migrate those objects to node N

3. Must construct a near-optimal routing table for node N
. Nodes found in step 1 bootstrap the table

4. Nodes near N are notified, and may consider using N in

their routing table as an optimization

« Richly connected mesh makes leave operations simple:

Node N leaves voluntarily:
1. Inform all neighbours of intent to leave, suggesting
an replacement node for the neighbours to link with.

Failures handled by redundant links (to non-closest peers)

Tapestry: Locating The Closest Neighbour

 How to find closest neighbour matching prefix?

— Probe all possibilities, measuring RTT, to pick closest
» Needs many probes = high overhead

» Prohibitively expensive for large scale systems

— Predict latency, based on virtual coordinates
» Assume the Internet can be modelled by a geometric space

— e.g. atwo-dimensional grid (although practical systems use a more complex space)

» Assign each node coordinates in that space 1T, . [Biaerre N zivdl i Do, ™ Snedbitig

Internet Network Distance with Coordinates-

— €.g.aposition on the gI‘ld Based Approaches", IEEE Infocom 2002.

— Might assign coordinates based on distance to

Well_known landmark nodes; mlght be based Cox et al., “Practical, Distributed Network
. . Coordinates”, ACM HotNets II, 2003.
on distance to other nodes in the peer-to-peer

system measured during normal operation
— Disseminate positions piggybacked onto other application messages

» (Calculating distance between any two nodes, whether or not direct
communication has taken place, done by simple geometry

Tapestry: Discussion

* Richly connected mesh makes Tapestry more robust than Chord
— Requires more state at each node

— Implementation is more complex
« 57000 lines of Java
» Compare to 7900 lines of C++ for Chord

* Closest neighbour selection helps to ensure Tapestry 1s efficient
in network distance covered
— Requires many control messages to determine distance to hosts

— Note: Tapestry and Chord both O(log N) hops, but Tapestry finds shorter
hops in general

Comparison of Chord and Tapestry

« Two very different approaches to peer-to-peer lookup
— Provide related, but somewhat different, lookup services

— Unstructured namespace
 SHA-1 hash

— Structured object lookup
» Topology agnostic ring structure vs. highly connected closest neighbour mesh
» Similar performance in terms of lookup hop count: both O(log N)

» Tapestry keeps more state, more complexity to optimise lookups in terms of
network topology

* Neither 1s the final solution - algorithms still evolving rapidly

— Scaling, churn, and topology awareness still issues

— Security a major unsolved problem

Uses of Distributed Hash Tables

A DHT maps from key to value
— Efficient and location transparent lookup

— Scalable to very large distributed systems

e (Can be used for:
— File sharing and data dissemination
* (OceanStore, Kademlia, etc.

— Distributed object location
» Skype user location

— Etc.

— Potential basis for future grid computing systems

OceanStore

* An example of a global file system, built using a DHT
— Aim: support 10 billion users each with 10,000 files

« Public, untrusted, infrastructure

— Extensive use of cryptography to ensure privacy; enforce access rules

— Extensive use of caching and FEC for robustness and performance

» File identified by secure hash of owner’s key and filename

— Files split into blocks, returns a list of identifiers for data blocks
» Blocks identified by cryptographic hash of contents

» Blocked pushed somewhere into the network, located a Tapestry-like protocol
— Uses the DHT for data storage

* Robust: makes multiple copies for availability
— Copy-on-write semantics for blocks; old versions retained forever
 Efficient: only changes between versions stored

 Efficient: files that share content automatically share storage since they hash to
the same block, closest replica of the block located by Tapestry

Deployment Considerations

» Peer-to-peer applications assume network provides transparent
end-to-end connectivity

 Wide deployment of NAT and Firewalls breaks this transparency

— NAT prevents inbound connections; cannot address hosts behind NAT
« Complicates applications since they cannot easily name/access peers
» Hosts no longer have unique addresses
 Bidirectional connectivity not assured, may vary by protocol or direction
» Especially affects protocols with dynamic connections = peer-to-peer

— Firewalls can prevent both in- and out-bound connections

— Makes it difficult to deploy peer-to-peer applications
* Sometimes intentionally, sometimes unfortunate side-effect

» Need both political and technical fixes

Deployment Considerations: NAT

« How to enable bidirectional
communication between hosts | Sigualling
behind NAT? e e

— A host outside a NAT can see AT | R .
o

the external source address of
the host inside the NAT
192.168.0.0/16

— Qutbound communication ok 92 168.0.2

— Can usually send to an address
from which you’ve received

192.168.0.2

» Sending opens a bidirectional NAT pinhole

« Sometimes for all traffic, sometimes only for symmetric traffic
— Talk to well known “signalling proxy”

* Proxy learns external addresses, communicates to desired peers

» Peers try to initiate direct flow, relay via proxy if fails

J. Rosenberg, “ICE: A Methodology for NAT Traversal for Offer/Answer
Protocols”, http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-13.txt

Deployment Considerations: Firewalls

Firewalls intentionally break connectivity for security reasons

 Many peer-to-peer applications try to work around this:
— Dynamically chosen ports
— Tunnelling in HTTP or other protocols

This is bad!

Leads to an arms race:

— Peer-to-peer application evades firewall by tunnelling
— Firewall gets more sophisticated, looks inside higher level protocol

— Higher level protocol later modified; can’t be deployed because firewalls
think the new version is an attempt to tunnel a peer-to-peer application

* E.g. how could we modify HTTP today?

A social problem; no technical solution

Summary

 The distributed hash table abstraction

— Concepts
— Example protocols:
¢ Chord
e Tapestry
« Uses and motivating example system:

— QOceanStore

* Deployment considerations

Peer-to-peer protocols represent interesting design evolution,
potentially useful for grid computing systems

Further Reading

1. 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, “Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications”, Proceedings of ACM SIGCOMM 2001, San
Diego, CA, USA, August 2001. http://acm.org/sigcomm/sigcomm2001/p12-stoica.pdf

2. B.Y.Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph and J. D. Kubiatowicz, “Tapestry: A
Resilient Global-Scale Overlay for Service Deployment”, IEEE Journal on Selected Areas in
Communications, Vol. 22, No. 1, January 2004. http://sthea.net/papers/tapestry jsac.pdf

3. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells and B. Zhao, “OceanStore: An Architecture for Global-
Scale Persistent Storage”, Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA, USA, November
2000. http://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

Read to understand the concepts, not all the details

