
Large Scale Systems Architecture
(1)

Grid Computing (M)
Lecture 7



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

From Distributed Systems to Grids

• What is Grid Computing?
• Why is it different from traditional distributed systems?

• Consider:
– Analysis of data from the Large Hadron Collider
– Distributed file system for an office environment

What key features of the former which make it a grid computing
environment rather than a distributed system?

• Multiple autonomous institutions; collaborative data collection and storage
• Enormous size of data repository and computational analysis tasks
• Need for reliability, robustness and data provenance

Similar systems becoming more common
• e-science (physics, bioinformatics), oil exploration, financial modelling, etc.



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Key Features and Concerns in Grids

• Autonomy
• Scalability

– Data
– Communication and computation
– Organisational

• Heterogeneity
– Host and network architecture
– Data format
– Organisational

• Security
– Authentication
– Authorisation
– Accounting

• Fault Tolerance
– Correctness and provenance
– Consistency and repeatability
– Graceful degradation
– System resilience vs. fault tolerance

What are the implications on system architecture?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

+ compose queries

Client-Server Systems and the Grid

Client-server system
+ load balancing
+ multiple services
+ multiple databases
+ security

• How to locate, describe and invoke services?
– UDDI + WSDL + SOAP
– Mobile data or mobile code?

• How to compose queries across services?
• How to disseminate and replicate data?

– Consistency and fault tolerance; provenance
• How to enforce security policy?

– Authentication, authorisation and accounting
• How to manage, schedule and account for resources?

+ replication

Replication protocol?

CORBA?
Web services?

Data or code?

Data sources

Dissemination protocol?

Database



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Client-Server Systems and the Grid

• Distributed client-server model represents state of the art in grid
computing systems
– A “Grid Services” architecture

• Traditional protocols re-purposed for Grid computing
– Scheduled data dissemination via GridFTP
– RPC services via UDDI + WSDL + SOAP
– Distributed batch processing environments

• Significant security challenges
– Authentication, authorisation and accounting
– Transitive trust; public key infrastructure

• Significant organisational challenges
– Business process modelling
– Data provenance and integrity; robustness and fault-tolerance

– Relatively static and planned infrastructure

• Tutorials will explore such systems
– Globus toolkit, OGSA-DAI, Condor, PERMIS, Shibboleth, etc.

Production ready technologies

New infrastructure
and processes



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Large Scale Systems Architecture

• Consider:
– What are the fundamental principles of Grids?
– Are we building these systems the right way?

• Is a distributed client-server model appropriate for the long term?

• Alternative architectures for:
– Naming and addressing
– Discovery and routing
– Availability and robustness
– Automatic parallelism
– Timing and ordering constraints
– Strong vs. weak coupling



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• Name: an identifier for the object
• Address: the location of an object

• Name resolution gives an address for an object, based on its name
– Or another name, to resolve recursively
– Names are sometime also addresses, encoding location information:

http://www.ietf.org/rfc/rfc4042.txt
urn:ietf:rfc:4042

• Questions for discussion:
– To what extent is it useful to embed location information into names?
– To what extent is it useful to embed structure into names?
– To what extent is it useful to have a single naming authority?
– Advantages/disadvantages of each?

Address

Name resolution

Naming and Addressing
Name



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Name Ownership

• Who controls the namespace?
– A hierarchical space

• Ownership of the root
• Partitioning the space

– Autonomy amongst partitions

– A flat namespace
• Centralised ownership
• No ownership

• What is the name allocation policy?

• Political vs. technical issues
– “Internet governance”
– Formal vs. informal naming

• Ontologies for e-science
• Flickr™ tags for photographs

• What is the trade-off between the desire for a well-defined namespace and the
need for organisational autonomy?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Discovery and Routing

• Given the name of an object, efficiently locate that object
• Desirable features:

– Scalable to large systems, many objects, many queries
– Fault tolerant, degrades gracefully
– Allows unstructured names (to support any type of data)

• Approaches:
– Centralized name service
– Distributed hierarchical name service
– Distributed flooding
– Distributed hash table

– What are constraints of each approach?

Centralized

Peer-to-peer



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Name service

Centralized Name Service

• Nodes advertise names of objects
they hold to central name service

• Searches resolved by that service
– Allows unstructured names;

any host can hold any object

• Problems:
– Doesn’t scale
– Single point of failure
– Centralized control

• Widely used: Globus, CORBA, UDDI, etc…



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Distributed Hierarchical Naming

• Assign hierarchical names to objects
– Delegate portions of the namespace to

different entities/organizations

• Build a search tree
– Each node knows its parent and children
– Search for key ascends towards the

root, then descends into the tree

• Assumptions:
– Structured hierarchical namespace
– Object ownership delegated to autonomous

organizations matching naming hierarchy
• Scalable name lookup

– Single root ⇒ centralized control

.

.ck .com .uk

.ac .co.gov

.gla .ucl .york

.dcs .admin.math

www

sibu Example: DNS



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Node 1 initiates search

Data floods network, even
after result found at node 4

Distributed Flooding

• Every node forwards packets to all of its neighbors
– Lifetime of packets are limited by time-to-live
– Packets have unique identifiers to detect loops

• Allows unstructured names
• Simple, robust, but generates large amounts of traffic
• Example: Gnutella

3

1
2

4 5
7

8 69

10



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Distributed Hash Table

• Passes the name through a hash function which maps it to a next
hop host; iterate to locate object
– Potentially flat unstructured names; location encoded via hash function

• Scaling to large numbers of hosts and names possible
– e.g. millions of hosts in “file sharing” peer-to-peer networks

• Location independent request routing:
– Initiator of request does not know where named object located

Name Hash Function

Hosts



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Discovery and Routing

• Distributed flooding and DHT introduce a new concept:
– Location of named object implicit in the lookup/routing process
– Requesting host doesn’t know or care where named object resides
– Interact with an unknown group of objects, which share some characteristic

• Implications for large scale systems:
– Flexibility
– Scalability
– Robustness
– Powerful programming abstraction

• Ability to name groups of objects with unknown membership, but common
characteristics

• Ability to name replicas without caring where/how replicated



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Availability, Robustness, and Coupling

• Location independent naming ⇒ automatic replication trivial

• How is node failure handled?
– Does it matter?

• Query will find another replica anyway
• Computation is atomic, can be repeated

– Failures inevitable as system size increases

• How are errors repaired? How tightly coupled is the system?
– How consistent must the data in a grid computing system be?

• How to resolve incompatible changes after network partition?
• Probabilistic forward error correction
• Probabilistic retransmission, avoiding implosion

– Acceptable to use gossip/epidemic protocols?
– Distribute data to hosts with some probability?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Timing and Ordering Constraints

• What guarantees are provided on operation timing?
– Total ordering? Partial ordering?
– Overhead of maintaining a clock?

• Arbitrate and serialise resource access
– Distributed locking
– Distributed transactions

• To what extent do traditional locking techniques apply?
– Web services require explicit locking, ordering
– Are there programming styles that implicitly order resource access?

• Lock-free algorithms
• Functional programming styles



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Automatic Parallelism

• To what extent does the programmer manage parallelism?
– Web services model: explicitly code parallelism in RPC requests

• But perhaps the called services hide parallelism internally?
• Similar to traditional object-oriented programming

– Alternatives:
• Active agents, spread via flooding, etc.
• Invoke services on named, but unknown group, sharing characteristics

• How to aggregate/process results, avoiding implosion?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Peer-to-Peer Systems

• Peer-to-peer and multicast protocols address many of these issues
– Very large scale (~millions of nodes)
– Fault tolerant, robust, graceful degradation
– Weakly coupled
– Expressive naming architectures

• An alternative to “traditional” computational grids?

• Motivating examples:
– MapReduce (large scale cluster computing)
– Astrolabe (distributed monitoring)
– Ocean Store (distributed file store)
– …



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Google MapReduce

• Problem: conceptually simple calculations on large data sets
– Indexing the web
– Statistical analysis of large sets of web pages

• Must run across large clusters for reasonable performance
– Distribute data collection, storage
– Distribute computational load

• What is the right programming abstraction?
– The functional map and reduce operations, implemented as a parallel

library



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Google MapReduce

map(k1, v1) → list(k2, v2)
reduce(k2, list(v2)) → list(v2)

Example – word count:
map(String key, String value)

// key: document name
// value: document contents
foreach word in value

EmitIntermediate(word, “1”)

reduce(String key, Iterator values)
// key: a word
// values: a list of counts
int result = 0
foreach v in values

result +=ParseInt(v);
Emit(AsString(result));

MapReduce library groups
intermediates with equal
keys, passes to reduce()



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Google MapReduce

Split 0
Split 1
Split 2
Split 3
Split 4

worker

worker

worker

worker

worker Output
file 0

Output
file 1

master

user program
(1) fork (1) fork (1) fork

(2) assign map
(2) assign reduce

(3) read (4) local write (5) remote read

(6) write

Input files Map phase Intermediate files
(on local disks)

Reduce phase Output files



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Google MapReduce

• Benefits:
– Automatic parallelism with no programmer conceptual effort
– Very robust fault tolerance model
– Scales to thousands of nodes; terabytes of data

• Consider:
– How are inputs, intermediate, worker processes results named?
– How are results, computations ordered?
– How are failures handled?

• What can we learn from this design when building other large
scale distributed systems?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Summary

• From distributed systems to grids
• Naming and its impact on system architecture
• Example:

– Google MapReduce system
– An alternative architecture to solve grid-like problems


