
System Architecture

A Distributed Systems Perspective
A brief survey of the topic, exploring some architectural ideas and principles
of value in Distributed and Grid computing

Emphasising Thought Experiments as a way of gaining insight

GC-M L04-SysArch
Peter Dickman



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Hardware Perspectives - basics

• Internal machine architectures
– Single machines now becoming multi-core, network-on-a-chip approach
– Super-computers: e.g. vector processors, SIMD & MIMD multiprocessors

• Desk area networks
– Connecting peripherals and computational elements

• Small-scale Local area networks
– Classics: Ethernet, token rings etc

• Composing networks
– Using bridges and routers: consider reach of multicast/broadcast

• Metropolitan networks
– Access points connect sites to a regional network facility
– Multiple institutions: need to provide safeguards e.g. firewalls

• Physical security and staff screening no longer enough



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Hardware perspectives - autonomy

• Multi-site single organisation networks
– Use VPN and similar technologies
– Communicate across the network core from one boundary point to another
– Can encrypt/decrypt at organisation boundaries

• Multi-site multi-organisation networks
– Negotiation at the boundary points
– Problem:

• Large organisations don’t collaborate in their entirety
• Sections within them collaborate for specific projects

• Internet-scale networking
– Millions of organisations
– Ever-changing dance of collaborative activity

• Focus today:
– architectural issues within a single project in a single administration



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Thought Experiment 1 - Hardware

• Layout of a bungalow:
– Entrance/hallway
– Main living room
– Kitchen
– Dining Room
– Bathroom
– Two Bedrooms
– Extensive gardens

• Problem: designing for the future

• Make it fit for purpose:
– Owner, enjoys cooking
– Frequent dinner parties

• What if the purpose changes?



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Software Architecture

• Architecture Description Languages
– Components, connectors
– syntax for capturing the design, usually graphical

• Architectural Styles (Shaw & Garlan)
– Dataflow systems

• Batch sequential; pipes & filters
– Call-and-return Systems

• Program & subroutine; OO; Hierarchical layers
– Independent Components

• Communicating processes; event systems
– Virtual Machines

• Interpreters; rule-based systems
– Data-centred Systems

• Databases; hypertext systems; blackboards



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Architectural Heterogeneity

• Fitness for purpose is the key…
– Real systems are hybrids

• Layering in the network
• Independent Components protected by firewalls as organisations
• Application systems built from Cooperating components, with

reconfigurable connectivity, as a layer over the OS/File System
• Shared data repository (internally distributed with replication)

• Single component is actually a composite, often in a different
design style, so the overall effect is somewhat hierarchical



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example Architectural Approaches

• Client-Server
– Pure

• exclusive-or
– Semi-pure

• exclusive-or at given layer, servers at layer N+1 are clients at layer N
– General

• Client-server perspective for a single interaction only

• Three-tier systems
• Multi-tier systems

• Information Dissemination alternatives:
– Publish-Subscribe
– Event-based approaches

• Implications of Push vs Pull and information hiding



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Thought Experiment 2 – LHC data

• Large Hadron Collider
– CERN device, multiple experiments in caverns around the ring
– Interests physicists at CERN and around the world
– Vast data output

• Sketch the data repositories and data flows



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Performance and Flexibility

• Any given design will offer a certain level of performance
– Depending on the features of its components parts

• A design will also have some degree of flexibility/adaptability
– Ease of change may vary considerably

• System evolution is one aspect of long-term maintenance

• Change/evolution at run-time, using dual systems, or off-line

• Distributed applications are built for purpose
– If short-lived purpose, unlikely to be intended to be flexible
– If built from components, reconfigurability may be almost free
– If long-lived, some element of future-proofing included, e.g.:

• Clean interfaces to allow component replacement and interceptors/adapters
• High-level specs to allow re-use



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
Building Distributed Systems – Guidance 1

• Maintain separation of concerns
– Even if it seems expensive

• Keep it clean
• Keep it simple
• Decide on some design principles early

– Prototype, evaluate and discard

• Security cannot be retrofitted

• When performance matters, ensure you keep the performant parts
central and simple

• Think carefully about synchronisation, consistency, global
knowledge etc



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
Building Distributed Systems – Guidance 2

• Think carefully about the overall architecture of your system
• Component placement, data flows, predicted loads etc

• Build the system out of tested components
• Honour components interfaces and avoid stressing them

• Use your desired behaviour (functional spec) to specify the tests,
and then really do conduct the tests

• Hope you don’t have to seriously debug it



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Thought experiment 3 – a file system

• Design a distributed file system
• What features do you want it to have?

• Consider basic technologies you will use
• Consider data placement, cacheing, consistency etc


