
Distributed Algorithms — A Rapid Overview

! Essential to have some awareness of:
" algorithms used in distributed systems
" data structure implications of distribution
" factors that influence algorithm behaviour

! Examples of specific algorithmic issues:
" problems unique to distributed systems
" additional complications in distributed systems
" new performance metrics

! Learning Objectives:
" awareness of some interesting groups of algorithms
" insight into specific problems that must be addressed
" knowledge of some specific algorithms and their use
" ability to select appropriate solutions

! Also must be aware of the impact of underlying system properties
" e.g. reliable FIFO comms channels simplify many problems

GC5:L3 – p.1/16

Algorithmic Metrics

! Assessing the usefulness of an algorithm may involve performance
estimates: classically space and time complexity
" e.g. Sorting can be done in O(n log (n)) time

! In distributed systems, there are more issues, including:
" space: local, total, average, worst
" time: local, total, end-to-end
" comms: # messages, # bits, link loadings, traffic patterns

! For example:
" the achievable level of concurrency may vary

– reducing end-to-end time but increasing total time
" global knowledge may be used

– held in one place this will
· reduce space costs, increase communication costs and time

– held in many places this may
· increase space costs, but reduce time and comms costs

– unless it changes often, then maintaining consistency costs
· in communications, and possibly on other metrics GC

Example Problem: Disseminating Information

! Classic problem in distributed computing
" wish to send data from one component to some/all others

! Variety of solutions, very different styles:
" Broadcast (brute force)
" Exploiting system topology (existing structure)
" Gossip (probabilistic; explicit or adventitious)
" Constructing useful mechanism (created structure)

! Assumptions, for example:
" System consists of a connected graph of:

– nodes (processors)
– undirected edges (bidirectional communication links)

" Message based vs RPC based communication

GC5:L3 – p.3/16

Message-based brute force Broadcast

! Initiator:
" Send message to every neighbour

! All other nodes:
" On receipt of a message:

– If it’s the first time seen:
· Send message to all neighbours (except sender)

– otherwise:
· ignore the message

! Observations:
" Without the “first time” rule, this never terminates
" The initiator doesn’t know when the algorithm terminates
" The message travels along all the comms channels

– usually twice! though the “except sender” rule helps
" Have to retain a list of “seen messages”
" Cannot send the same message twice!

GC



Exploiting Existing Structure I

! Suppose the nodes are organised into a ring structure:
" Initiator:

– Send message to “next” node
– Await message from “previous” node

" All other nodes:
– On receipt of a message:

· send message to “next” node
! Terminates, initiator is aware of termination, minimal message passing,
minimal space requirements, can resend a message providing originator
can distinguish their message

! In a complete graph:
" initiator gives a copy to every neighbour

GC5:L3 – p.5/16

Exploiting Existing Structure II

! In a rectangular lattice:
" Initiator:

– Send message to up, down, left and right nodes
" All other nodes:

– On receipt of a message
· from right: send it to the left
· from left: send it to the right
· from below: send it up, left & right
· from above: send it down, left & right

" Some parallelism, no need to remember messages

! In a torus:
" could exploit parallelism as above, but must beware wrapping
" could send out messages as above, but with a lifetime/hopcount of
up to half the dimension vertically, and then half horizontally

" could simply traverse the data structure one element at a time
GC

Gossip/Epidemic Approaches

! Can use more relaxed approaches to dissemination
! Exchange information with some neighbours

" as part of other communications
" deliberately chosen (maybe at random)

! Information slowly spreads
! Probabilistic effects:

" some of the nodes have the info after a given amount of time
" a particular node may have the info at a particular time

! Low cost, very effective, no rigid guarantees

GC5:L3 – p.7/16

Created Structure

! Would like to only send N messages to reach N nodes
! Would like to cope with an arbitrary graph structure
! Would like some sense of time required to disseminate info
! Can create structure to achieve this (c.f. overlays in P2P)

Connected Graphs and Spanning Trees
! Given a connected graph
! A spanning tree is a subgraph that:

" is connected
" contains all of the nodes/vertices
" contains the smallest possible number of edges
" (hence it is a tree)

GC



Constructing a Spanning Tree

! Initiator:
" send messages to all neighbours and await replies

! All other nodes:
" on receipt of first message:

– note edge it arrived along, parent in spanning tree is at other end
of that edge

– send messages to all other neighbours and await replies
· note whether or not we are accepted as their parent

– when all replies received send our reply to parent telling them they
are our parent

" on receipt of subsequent messages:
– immediately send reply back saying they are not our parent

! When initiator receives all replies, a spanning tree has been constructed
! The tree is rooted and directed

" the “parent” relation points towards the root/initiator
! Any node can exploit the tree by ignoring the “direction” of links GC5:L3 – p.9/16

Using a Spanning Tree I

! Can efficiently broadcast information:
" source: send message to all neighbours in tree

– i.e. pass the message to your parent and all children
" all other nodes: on receipt of a message, pass it to all neighbours in
tree except the sender

! Can also efficiently acquire information:
" use a broadcast to trigger a convergecast

Convergecast in a spanning tree:
! Triggering node:

" collect messages until all neighbours have communicated
" consolidate received data plus own data

! All other nodes:
" collect messages until all neighbours except one have communicated
" consolidate received data plus own data
" pass combined data to remaining neighbour

GC5

Using a Spanning Tree II

! Putting the pieces together:
" If there isn’t a spanning tree, initiate the building of one
" Use the spanning tree thus:

– Broadcast a ‘convergecast trigger’, to acquire data
· i.e. act as initiator in a broadcast, where the message is:
“do a convergecast, passing in your data”

– Act as Triggering Node in the ensuing convergecast
– Broadcast the outcome of the data processing

! Properties:
" O(E) messages & total time to build tree, O(N) to use it
" end-to-end time proportional to height of tree
" tree shape determined by comms latencies

– links reached first end up in the tree
" not at all fault-tolerant
" must beware confusion if multiple trees are constructed
simultaneously, multiple broadcasts overlap etc

GC5:L3 – p.11/16

Example Problem: Global Snapshot

Want to determine some “global” value?
! Can ask everyone to note their data at a specified time

" needs highly synchronised clocks & know in-transit msgs
! Can use broadcast-convergecast three times to:
pause all activity, determine value, resume activity

With FIFO channels can use Chandy-Lamport algorithm:
! Initiator:

" record local state and send snap messages out on all channels
" on each channel:

– record all messages received until a snap appears
! All other nodes:

" on receipt of first snap message:
– record local state and send snap messages out on all channels
– on each channel:

· record all messages received until a snap appears
NB: channel used by initial snap is deemed empty GC5



Example Problem: Synchronising Clocks

! Maintaining accurate clocks is a consensus problem
! Issues: initialisation, clock drift, required accuracy
! Accuracy:

" Radio delay across UK is about 0.003 seconds
" GPS receivers can get time accurate to a milisecond or better
" Often, but not always, good enough

Basic Techniques:
! Assuming one machine has accurate time, ask it

" problem: communication latency
! As above, but record duration of call and take midpoint

" problem: assumes call/return symmetry; consistent slow drift
! Collect several such estimated clock times and average them

GC5:L3 – p.13/16

Network Time Protocol

! Goals:
" accurate synchronization to UTC for Internet
" reliability
" scalable, with frequent resynchronisation
" protection from interference

! Basic idea: hierarchical approach
" Top levels of “tree”: accurate (atomic) clocks
" Primary servers are trusted, accurate etc
" Secondary servers use statistical analysis to interpret results of
communications with primary servers

" Local area networks exploit basic techniques above

GC5

Logical and Vector Clocks

! Don’t really want perfectly synchronized clocks
! Do need clocks to be synced reasonably well
! e.g. distributed make

" must get the actions in the right order

! Logical clocks in each node & message: cheap & effective
! Lamport Logical Clock

" a counter, incremented on each action/message send
– inc max of own clock and message clock on receipt

! Vector Clocks
" a vector of counters at each node, with one slot per node

– inc own counter in local vector on action/message send
– take max of all vector elements on message receipt

! Lamport logical clocks embody some aspects of causality
! Vector clocks embody more causal ordering knowledge

GC5:L3 – p.15/16

Problem Solving in Grid Systems

! Usual issues:
" organise data and computation

– what to do
– how to do it
– when to do it

! Additional complication in distributed systems:
" where to do it

– where is the data
– where will the processing take please

" move data to the computational elements?
" move computations to the data?

! Major new issue for Grid computing:
" the components belong to autonomous organisations

– nodes, data, code, etc
" need to agree on security etc and compromise on locations

GC5


