
Remote Procedure Call — Java RMI

! Dr Peter Dickman
! Email: pd@dcs.gla.ac.uk
! Materials: /users/students4/software/public/GCM

! High-speed summary of the DAS4 lectures on programming with RMI:
" RPC is a key building block for distributed systems
" Higher level than socket programming
" Learning objectives:

– Understand what is happening “under the hood”
– Be able to use these technologies
– Be able to explain what is happening and why

! Two pieces of practical work:
" Completely trivial warm-up exercise — issued today, complete asap
" Simple test of use of RMI — out Friday 20th, back Friday 27th Jan

GC5:L2 – p.1/16

Extending the Reference/Invocation

! Basic concepts for OO programmers:
references to objects; invocations of object methods

! More generally: procedures/functions are invocable code fragments
encapsulate state with related code fragments for manipulating it

References within processes omitted

Client B

Client C

Machine X

Machine Y

Client A

Client D

Server Process

Machine Z

! Why assume that references
are forced to stay within the
process boundary?

! Why restrict invocations to be
within the callers process?

GC

Acquiring Remote References

! Can acquire a Remote Ref as an invocation parameter or result
! But there’s a bootstrapping problem. . .

! Alternative approach:
" Expose/acquire via reference server
" Another bootstrap problem?
" “magic” libraries fix this
" Name servers match names to refs
" Java RMI has the rmiregistry

Client

Server exports object ref to registry

Client asks registry for reference

Client invokes Server object

ServerRegistryClient

ServerRegistryClient

ServerRegistryClient

ServerRegistry

GC5:L2 – p.3/16

Implementing Remote References

! Generate an illusion of “remote” references
! Utilise local references to hidden objects that exploit sockets etc
! Generate underlying code, utilise network libraries, extended run-time

A B
o1 o2

o1 & o4 in A and o3 in C all hold references to o2 in B

(i) Programmer View
remote reference indicates remote object

A B
o2

(ii) System view
remote reference indicates local proxy
local proxy indicates remote entry

o1

B
o2

(iii)

C
o3

Multiple remote references

A
o1

o4

GC



What happens during an RPC/RMI call?

! Invocation is to a local stub object, providing same interface
! It marshals/serializes/flattens the arguments, passes into network

! On receipt at remote process, call and args are unpacked
! A thread, and associated stack, is created/acquired and invoked
! New, remote thread invokes the remote object

! Results are returned by reversing these actions

GC5:L2 – p.5/16

The effect on the stack frames:

GC

Concurrency Implications

! Multiple incoming calls create/acquire multiple threads

! Creating threads vs Thread pools

! Is the concurrency significant?
! Is it bounded? If so, how?
! Could the server be overloaded?

! Size the system: number of calls ∗ duration

! Dynamically restricting the amount of concurrency?

GC5:L2 – p.7/16

Parameter Passing in an RPC

! Arguments are at the caller/client, but needed by the callee/server
! Options:

" server makes RPCs back to argument object
– but how many calls, is this efficient?

" argument object is migrated to server for duration of call
– do others get to access it? if so local vs remote issues

" argument object migrated to server forever
" argument object is copied to server

– but now two copies, are they kept consistent?
· if so how? If not, what happens?

– Is one copy discarded after call completes?
· if so, which one?

– If copying occurs, how deep is the copy?

GC



Java Parameter Passing

! normal invocations
" built-in values

– passed by copy/value to the relevant parameter/register
" normal Java objects

– passed by reference, i.e. pointer to object is passed by copy/value
! RMI calls:

" built-in values
– passed by copy/value to the relevant parameter/register
– machine heterogeneity: big/little endian, width of integers etc
– ensure we have the same value, not the same bit-pattern

" remotely invocable objects
– passed by reference
– a remote reference is constructed at the callee side of the call
– regardless of whether the object was local or remote at the caller

" normal java objects
– interesting and awkward question. . .

GC5:L2 – p.9/16

Passing local objects in remote calls

! Could forbid this. But very restrictive.
! Could make every Java object remotely invocable. Too expensive.
! Could dynamically make objects invocable. Horrible security implications.
! Could permanently migrate the object. Renders it unusable locally.
! Could temporarily migrate the object. Blocks other calls. Deadlocks?
! Also, if the object contains references, do we migrate them too?

! Solution is to deep copy the object: copy it and everything it references
! View the copy as separate, no attempt to maintain consistency

RMI semantics:
! normal java objects are passed by deep copy/value
! built-in values are passed by copy/value
! remotely invocable objects are passed by reference

GC5

Call Semantics

! Normal invocation is exactly-once
! RPC/RMI does not give exactly-once semantics

! A call may fail before, during or after execution at remote site
! Simply repeating a call that doesn’t reply may give multiple execution

! Idempotent calls are very helpful: can repeat them safely
" adding a value into a variable is not idempotent
" assigning a value into a variable is idempotent

– in the absence of parallel confounding activity

Definition: a function f is idempotent if and only if ∀x : f(f(x)) = f(x)

GC5:L2 – p.11/16

Remote Exceptions in Java RMI

! because of the possibility of problems (e.g. no server present)
! all remotely invocable methods potentially throw a RemoteException
! these are generated automagically by the run time support

! because the stub objects have to be generated, it’s important to indicate
which methods are remotely invocable; they form a remote interface

! because the stubs/remote refs may throw remote exceptions, it’s
important to be aware of them as different and provide try-catch clauses

! Overall effect:
" remotely invocable objects and remote invocations do not look
exactly like normal local ones, but they are very similar

" remote references do look like local references; until you use them

GC5



Remote Interfaces

! If instances of a class are supposed to be remotely invocable:
" The class must extend UnicastRemoteObject
" The class must implement an interface that describes the methods it
makes available to holders of remote references to it.

" Such interfaces must extend Remote
" the methods must declare they can throw RemoteException

– even though their implementations will not do this explicitly
! Remote method parameters and results must be acceptable

" built-in types are acceptable
" references to remotely invocable objects are acceptable
" references to normal Java objects are only acceptable if the object is
an instance of a class which implements Serializable
– which is a special interface, requiring no specific methods

! References to a remote object indicate the hidden stub
! Their type is the remote interface type, not the class

GC5:L2 – p.13/16

Inheritance and Java RMI

! Interfaces use multiple inheritance
" This means the remote interfaces form a DAG (actually a
semi-lattice) in the inheritance hierarchy, descended from Remote

! Classes use single inheritance
" This means the remotely invocable classes form a tree in the
inheritance hierarchy, descended from UnicastRemoteObject

! Inheriting from UnicastRemoteObjectmeans the class cannot inherit
from another class

! Common solution is to use Veneers:
" Interface I extends Remote

" Class C implements I extends something-else

" Class V implements I extends UnicastRemoteObject

" only state in a V is a reference to a C
" methods in V call corresponding methods in the referenced C object

GC5

Using the rmiregistry as a name server

! Name servers offer an advertise/lookup facility
" advertise a name (string) and reference (remotely invocable object)
" lookup a reference by providing the name

! rmiregistry works like this, but only accepts references to processes
on the same machine

! care is needed over the CLASSPATH to ensure the rmiregistry can
see the stubs etc

! the references handed out by the rmiregistry can be cast to the
interface type, but not to the class type, because they actually point at a
local stub object

! be aware that the client has to know the rmiregistry used by the
server, and they have to agree on the name used in the advertise/lookup
operations

! would usually build your own, more flexible, name server; just use
rmiregistry to access that name server

GC5:L2 – p.15/16

Practical Activity

! Look in /users/students4/software/public/GCM/
Look in the PD-software/simple-rmi-example subdirectory

! You will find an instruction sheet (in .tex .dvi .ps & .pdf formats)
! You will also find five Java files; these form a whole system, copy them
! Follow the instructions very thoroughly and carefully
! You should probably do this on Linux rather than Windows

! This is essential preparatory work for the RMI assessment issued shortly
" You cannot afford to defer your learning, do this exercise asap
(and certainly by the end of the weekend)

! If you’ve taken DAS4, you’ve already done this exercise;
but refresh your memory and practice your RMI coding anyway

GC5


