
Low-Level Embedded Programming 

Real-Time and Embedded Systems (M) 
Lecture 18 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Lecture Outline 

•  Embedded systems programming 
–  Interrupt and timer latency 
–  Memory issues 

•  Protection 
•  Virtual memory 
•  Allocation, locking, leaks and garbage collection 
•  Caches 

–  Power, size and performance constraints 
–  System longevity 
–  Development and debugging 

•  Example environments 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Embedded Systems Programming 

•  Some real-time embedded systems are complex, implemented on 
high-performance hardware 

•  Others must be implemented on hardware chosen to be low cost, 
low power, light-weight and robust; with performance a distant 
concern 
–  Often-times implemented in C or assembler, fitting within a few kilobytes 

of memory 
–  Correctness a primary concern, efficiency a close second 

•  How does resource constrained hardware affect applications? 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Interrupt and Timed Task Latency 

•  Key issue in real-time systems is time to respond to events 
•  Should have predictable worst-case bounds, otherwise cannot 

reason about the system 
–  Both interrupt latency and task scheduling latency 

•  Examples: 
–  Linux has ~600µs typical interrupt handler latency, often runs with 100Hz 

clock for task scheduling (i.e. 10000µs latency) 
•  Long history of problems with system call latency, causing tasks to block for 

hundreds of milliseconds on certain device accesses 
•  Resolved for most common devices, but still unpredictable (and long) latency 

with uncommon hardware 
–  RTLinux claims a maximum 15µs interrupt handler latency, all scheduled 

tasks execute within at most 35µs of their scheduled time 
•  Other hard real-time operating systems offer similar guarantees 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Interrupt and Timed Task Latency 

•  Why such a difference? 
–  Preemptable microkernel, with single address space 

•  No context switch, user-to-kernel mode, overhead 
–  No virtual memory or memory protection 

•  No paging delays 
•  No delays while page tables adjusted 

–  Device drivers designed with minimal non-preemptable sections 
•  Light-weight, prioritised, threads fire in response to interrupts 

•  Does it matter? It depends on the application… 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Kernel Application 

Memory Protection 

•  Many embedded systems use a single flat address space 
–  Applications, shared libraries, kernel, devices all visible 
–  A system or library call is equivalent to a function call 

–  Makes system calls, interrupts, very fast and predictable 
•  No context switch to kernel mode 
•  No adjustment of MMU page tables 

–  Consequences 
•  No isolation between applications, or between applications and the kernel 
•  A change to one part implies that the entire system has to be revalidated; 

difficult as systems become larger 
–  Some systems offer limited protection 

•  Read only mapping of program/system text; IRQ vectors 
•  Optional full memory protection 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Memory Protection 

•  Consequences of offering memory protection: 
–  Unpredictable latency 

•  May take longer to task switch to/from a protected task 
–  Memory overhead 

•  Protection provided on a per-page basis, leads to wastage 
•  Overhead of maintaining the page tables and protection maps 

–  Code overhead 
•  Operating system is required to trap illegal access and recover system to a safe 

state 

•  Which is easiest: proving the system correct, or writing handlers 
to safely recover from all possible failures, delays? 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Virtual Memory: Address Translation 

•  Two aspects to virtual memory: 
–  Address translation 
–  Paging to disk 

•  Address translation is the act of making a fragmented block of 
physical memory appear to be a single contiguous block  
–  Useful in dynamic systems: enables requests for large blocks of memory to 

be allocated when there is no physically contiguous block available 
–  Adds overhead, since system must manage address translation tables 

•  Uses memory, increases context switch time 
•  Complicates DMA device access 

•  Better to pre-allocate static memory pools for real-time tasks 
–  Manage the sub-division of address space within the application 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Virtual Memory: Paging to Disk 

•  Disk based virtual memory is supported by many systems that run 
both real time and non-real time tasks 
–  Paging to disk clearly impact real-time performance 
–  Unpredictable delays, depending whether page is in memory or on disk 

•  Systems usually provide ability to (selectively) prevent paging 
–  Examples: 

•  POSIX allows regions of memory to be locked into RAM and preventing from 
paging using mlock(addr, len) and mlockall() 

•  Windows allows all memory owned by a particular thread to be locked 
•  LynxOS allows pages of higher priority tasks are locked in memory, but new 

allocations can page out memory belonging to lower priority tasks 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Memory Leaks and Garbage Collection 

•  An embedded system has to run for a long period of time, without 
user intervention 

•  Resource leaks can be problematic: 
–  C programs typically have memory leaks due to programmer error 

•  Significant problem in long-lived or resource constrained systems 
•  Better to pre-allocate static buffers, avoid the chance of a memory leak 
•  Be very careful to free memory and other resources after use 
•  Do you always check for out of memory errors? And recover gracefully?  

–  Remember the recovery code cannot allocate memory 
–  This may include the stack frame needed to make a function call! 

–  Modern languages use garbage collection to avoid resource leaks 
•  Has a poor reputation due to unpredictable delays when collection occurs 
•  However, real-time garbage collection algorithms – with predictable latency, at 

controlled times – do exist 
–  Make sure the garbage collector is appropriate for the application 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

# uname -srm 
Linux 2.4.25 i686 
# cat tst.c 
int main() 
{ 
        return 0; 
} 
# gcc tst.c -o tst 
# ls -l tst 
-rwxrwx---  1 csp  csp  4507 Mar 16 00:51 tst 

Memory: What is a Small System? 

•  Embedded systems often very constrained compared to typical 
desktop computers 
–  You may be running on an 8 bit processor, with kilobytes of RAM 
–  Operating system typically optimised for the environment, provides only 

minimal required functions 
•  The QNX 4.x microkernel is approximately 12kbytes in size 
•  The VRTX microkernel is typically 4-8kbytes in size 

–  For comparison: 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Memory: What is a Small System? 

•  Example: Renesas H8/3217 processor 
–  16 - 60kBytes ROM 
–  512Bytes - 2kBytes SRAM 
–  10-16MHz clock 
–  1 x 16-bit timer; 3 x 8-bit timer 
–  1 x Watchdog timer 
–  2 x UARTS; 2 x I²C interfaces 

•  The H8/3217 provides a solution to 
applications where a cost effective 
solution with up to 4 channels of 
serial communications is required 
–  Monitors, Televisions 
–  Radios, Stereo systems 
–  Set Top Box system controllers 

•  The H8/3217 is a member of the 
H8/300 series of high performance 
8/16-bit CPU’s. This device is used 
in applications where a high level of 
communications capability is 
required 

•  The combination of 2 high speed 
UARTS capable of transmitting data 
asynchronously at 500k baud and 
two channels of I2C capable of 
transmitting at over 400k bits per 
second make this devices a powerful 
communications processor 

[Adapted from Renesas website] 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Effects of Cache 

•  You may be running on a more modern processor 
–  PowerPC 405CR embedded processor 

•  32 bit RISC processor, compatible with desktop PowerPC 
•  133MHz or 266MHz clock speed 
•  500mW power consumption 

–  Compare: Pentium M (“Centrino”) processor consumes up to 24.5W  
•  CodePackTM compression of executables 
•  Likely has several megabytes of memory 
•  [Various types of PowerPC and ARM processors commonly used] 

–  Relatively cheap, comparatively high performance, low power 

•  Has a small cache, which you may want to disable: 
–  Processor and memory speeds are closely matched 

•  Compare to desktop processor, with order magnitude difference 
–  Simpler to predict memory access times without the cache 
–  Cache improves average response times, but introduces unpredictability 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Power, Size and Performance Constraints 

•  Embedded systems often battery powered or power sensitive 
–  What influences power consumption? 

•  Power consumption ∝ (clock speed)2 
•  Memory size and processor utilization 

•  May have to be physically small and/or robust 
•  May have strict heat production limits 
•  May have strict cost constraints 

–  That processor is slower, but 10¢ cheaper, the production run is 1 million, 
you paid your salary for the next couple of years… 

•  Used to throwing hardware at a problem, and writing inefficient – 
but easy to implement – software 
–  Software engineering based around programmer productivity 
–  The constraints may be different in the embedded world… 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

System Longevity 

•  Embedded systems often safety critical or difficult to upgrade 
  Medical devices     CD or DVD player 
  Automotive or flight control   Washing machine 
  Railway signalling    Microwave oven 
  Industrial machinery    Pacemaker 

•  May need to run for several years, in environment where failures 
either kill people, or are expensive to fix 
–  Can you guarantee your system will run for 10 years without crashing? 
–  Do you check all the return codes and handle all errors? 
–  Fail gracefully? 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Development and Debugging 

•  Embedded systems typically too limited to run a compiler 
•  Develop using a cross compiler running on a PC, download code 

using a serial line, or by burning a flash ROM and installing 

•  Often limited debugging facilities: 
–  Serial line connection to host PC 
–  LEDs on the development board 
–  Logic analyser or other hardware test equipment 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Example Environments 

•  VxWorks 
•  QNX 
•  Symbian 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

VxWorks 

•  Monolithic kernel; POSIX with real time extensions 
•  Proprietary APIs to control more advanced features 

–  Message queues with timeouts 
–  Control of priority inheritance on semaphores 
–  User processes can enable/disable interrupts 

•  Defaults to a single address space, with address translation 
–  Processes can request memory protection, if desired 
–  Processes can control which regions of memory are cached 

•  Focus on hard real time, deeply embedded systems 
–  Runs on the Mars rovers, Pathfinder 

•  Pathfinder had problems due to uncontrolled priority inversion causing some 
tasks to miss their deadlines; caused system to repeatedly reset to safe state 

•  Enough debugging code left in that the problem could be resolved, and new 
code uploaded 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

QNX 

•  Pure microkernel system 
–  Many optional components, scales from 12kbytes to run on high end SMP 

machines with gigabytes of memory 

•  Native support for threads with a single address space 
–  Memory protection optional 

•  Message passing abstraction for inter-task communication 
–  Very efficient, due to single address space 
–  Tasks inherit priority of the messages 
–  Messages can be blocking, variable sized, or fixed size non-blocking 

•  Network stack, TCP/IP 
•  Full GUI, web browsers, Java, etc 

•  Focus on real time embedded, but user-facing, systems 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Psion/Symbian 

•  Example: Psion series 5mx – precursor to Symbian mobile phones 
–  16M RAM, 16M ROM 
–  36MHz ARM710 processor 
–  Preemptive multitasking, GUI, C++ 
–  Software: agenda, word processor, spreadsheet, 

address book, email, web browser, calculator,  
jotter, sketch, voice notes, Java 

–  Runs for ~1 month on 2 AA batteries 
–  Reliable: runs for years without rebooting… 

•  Small, efficient, power-aware and robust code 

•  Focus on telephony and soft real time systems 
–  Often run under a hard real time OS using a two-level scheduler 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Summary 

By now you should… 
•  Be thinking about the system issues, and how features that 

improve general purpose performance hinder real time jobs 
•  Be thinking about the constraints on embedded systems, and 

differences in how they are engineered 
•  Know a little about different systems that are available 

 
Tomorrow: summary and overview of the module 


