Low-Level Embedded Programming

Real-Time and Embedded Systems (M)
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Lecture Outline

 Embedded systems programming
— Interrupt and timer latency
— Memory issues

* Protection
» Virtual memory

» Allocation, locking, leaks and garbage collection
» Caches

— Power, size and performance constraints
— System longevity
— Development and debugging

« Example environments
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Embedded Systems Programming

* Some real-time embedded systems are complex, implemented on
high-performance hardware

e Others must be implemented on hardware chosen to be low cost,
low power, light-weight and robust; with performance a distant
concern

— Often-times implemented in C or assembler, fitting within a few kilobytes
of memory

— Correctness a primary concern, efficiency a close second

 How does resource constrained hardware affect applications?
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Interrupt and Timed Task Latency

« Key issue in real-time systems 1s time to respond to events

« Should have predictable worst-case bounds, otherwise cannot
reason about the system
— Both imterrupt latency and task scheduling latency

« Examples:

— Linux has ~600us typical interrupt handler latency, often runs with 100Hz
clock for task scheduling (i.e. 10000us latency)

* Long history of problems with system call latency, causing tasks to block for
hundreds of milliseconds on certain device accesses

» Resolved for most common devices, but still unpredictable (and long) latency
with uncommon hardware

— RTLinux claims a maximum 15us interrupt handler latency, all scheduled
tasks execute within at most 35us of their scheduled time

 Other hard real-time operating systems offer similar guarantees



Copyright © 2005 University of Glasgow

Interrupt and Timed Task Latency

 Why such a difference?

— Preemptable microkernel, with single address space
* No context switch, user-to-kernel mode, overhead

— No virtual memory or memory protection
* No paging delays
* No delays while page tables adjusted

— Device drivers designed with minimal non-preemptable sections
» Light-weight, prioritised, threads fire in response to interrupts

e Does 1t matter? It depends on the application...
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Memory Protection

 Many embedded systems use a single flat address space
— Applications, shared libraries, kernel, devices all visible
— A system or library call 1s equivalent to a function call

Application “ ‘ ‘ “ H ‘ Kernel I

— Makes system calls, interrupts, very fast and predictable
* No context switch to kernel mode
» No adjustment of MMU page tables
— Consequences
» No isolation between applications, or between applications and the kernel
* A change to one part implies that the entire system has to be revalidated;
difficult as systems become larger
— Some systems offer limited protection
* Read only mapping of program/system text; IRQ vectors
» Optional full memory protection
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Memory Protection

« Consequences of offering memory protection:
— Unpredictable latency
« May take longer to task switch to/from a protected task
— Memory overhead
» Protection provided on a per-page basis, leads to wastage
* Overhead of maintaining the page tables and protection maps

— Code overhead

» Operating system is required to trap illegal access and recover system to a safe
state

« Which is easiest: proving the system correct, or writing handlers
to safely recover from all possible failures, delays?
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Virtual Memory: Address Translation

« Two aspects to virtual memory:
— Address translation
— Paging to disk

« Address translation 1s the act of making a fragmented block of
physical memory appear to be a single contiguous block

— Useful in dynamic systems: enables requests for large blocks of memory to
be allocated when there is no physically contiguous block available

— Adds overhead, since system must manage address translation tables
» Uses memory, increases context switch time

» Complicates DMA device access

« Better to pre-allocate static memory pools for real-time tasks

— Manage the sub-division of address space within the application
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Virtual Memory: Paging to Disk

« Disk based virtual memory is supported by many systems that run
both real time and non-real time tasks

— Paging to disk clearly impact real-time performance

— Unpredictable delays, depending whether page 1s in memory or on disk

« Systems usually provide ability to (selectively) prevent paging

— Examples:

POSIX allows regions of memory to be locked into RAM and preventing from
paging using mlock (addr, len) and mlockall ()

Windows allows all memory owned by a particular thread to be locked

LynxOS allows pages of higher priority tasks are locked in memory, but new
allocations can page out memory belonging to lower priority tasks
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Memory Leaks and Garbage Collection

 An embedded system has to run for a long period of time, without
user intervention

« Resource leaks can be problematic:

— C programs typically have memory leaks due to programmer error
 Significant problem in long-lived or resource constrained systems
 Better to pre-allocate static buffers, avoid the chance of a memory leak
* Be very careful to free memory and other resources after use
* Do you always check for out of memory errors? And recover gracefully?

— Remember the recovery code cannot allocate memory
— This may include the stack frame needed to make a function call!

— Modern languages use garbage collection to avoid resource leaks

* Has a poor reputation due to unpredictable delays when collection occurs

* However, real-time garbage collection algorithms — with predictable latency, at
controlled times — do exist
— Make sure the garbage collector is appropriate for the application
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Memory: What is a Small System?

 Embedded systems often very constrained compared to typical

desktop computers

— You may be running on an 8 bit processor, with kilobytes of RAM

— Operating system typically optimised for the environment, provides only
minimal required functions

» The QNX 4.x microkernel is approximately 12kbytes in size

* The VRTX microkernel is typically 4-8kbytes in size

— For comparison:

# uname -srm
Linux 2.4.25 ié686

# cat tst.c
int main ()

{
return O;
}
# gcc tst.c -o tst
# 1s -1 tst
-rwxrwx--- 1 csp csp ,4507 Mar 16 00:51 tst
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Memory: What is a Small System?

Example: Renesas H8/3217 processor

16 - 60kBytes ROM

512Bytes - 2kBytes SRAM
10-16MHz clock

1 x 16-bit timer; 3 x 8-bit timer
1 x Watchdog timer

2 x UARTS; 2 x I?C interfaces

The H8/3217 provides a solution to
applications where a cost effective
solution with up to 4 channels of
serial communications is required

Monitors, Televisions
Radios, Stereo systems
Set Top Box system controllers

The H8/3217 1s a member of the
H8/300 series of high performance
8/16-bit CPU’s. This device 1s used
in applications where a high level of
communications capability is
required

The combination of 2 high speed
UARTS capable of transmitting data
asynchronously at 500k baud and
two channels of I’C capable of
transmitting at over 400k bits per
second make this devices a powerful
communications processor

[Adapted from Renesas website]
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Effects of Cache

* You may be running on a more modern processor

— PowerPC 405CR embedded processor
32 bit RISC processor, compatible with desktop PowerPC
133MHz or 266MHz clock speed

500mW power consumption

— Compare: Pentium M (“Centrino”) processor consumes up to 24.5W

CodePack™ compression of executables

Likely has several megabytes of memory
» [Various types of PowerPC and ARM processors commonly used]

— Relatively cheap, comparatively high performance, low power

e Has a small cache, which you may want to disable:
— Processor and memory speeds are closely matched
« Compare to desktop processor, with order magnitude difference
— Simpler to predict memory access times without the cache
— Cache improves average response times, but introduces unpredictability
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Power, Size and Performance Constraints

Embedded systems often battery powered or power sensitive
— What influences power consumption?

« Power consumption « (clock speed)?

* Memory size and processor utilization

* May have to be physically small and/or robust
e May have strict heat production limits

e May have strict cost constraints

— That processor 1s slower, but 10¢ cheaper, the production run 1s 1 million,
you paid your salary for the next couple of years...

» Used to throwing hardware at a problem, and writing inefficient —
but easy to implement — software

— Software engineering based around programmer productivity
— The constraints may be different in the embedded world...
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System Longevity

 Embedded systems often safety critical or difficult to upgrade

Medical devices CD or DVD player
Automotive or flight control Washing machine
Railway signalling Microwave oven
Industrial machinery Pacemaker

« May need to run for several years, in environment where failures
either kill people, or are expensive to fix
— Can you guarantee your system will run for 10 years without crashing?
— Do you check all the return codes and handle all errors?

— Fail gracefully?
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Development and Debugging

 Embedded systems typically too limited to run a compiler
* Develop using a cross compiler running on a PC, download code

using a serial line, or by burning a flash ROM and installing

» Often limited debugging facilities:
— Serial line connection to host PC

— LEDs on the development board
— Logic analyser or other hardware test equipment
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Example Environments

« VxWorks
e QNX
e Symbian
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VxXWorks

* Monolithic kernel; POSIX with real time extensions
* Proprietary APIs to control more advanced features

— Message queues with timeouts
— Control of priority inheritance on semaphores
— User processes can enable/disable interrupts

» Defaults to a single address space, with address translation
— Processes can request memory protection, if desired
— Processes can control which regions of memory are cached

* Focus on hard real time, deeply embedded systems

— Runs on the Mars rovers, Pathfinder

 Pathfinder had problems due to uncontrolled priority inversion causing some
tasks to miss their deadlines; caused system to repeatedly reset to safe state

* Enough debugging code left in that the problem could be resolved, and new
code uploaded
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QNX

e Pure microkernel system

— Many optional components, scales from 12kbytes to run on high end SMP
machines with gigabytes of memory

« Native support for threads with a single address space
— Memory protection optional

« Message passing abstraction for inter-task communication
— Very efficient, due to single address space
— Tasks inherit priority of the messages
— Messages can be blocking, variable sized, or fixed size non-blocking

 Network stack, TCP/IP

* Full GUI, web browsers, Java, etc

« Focus on real time embedded, but user-facing, systems
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Psion/Symbian

« Example: Psion series Smx — precursor to Symbian mobile phones
— 16M RAM, 16M ROM
— 36MHz ARM710 processor
— Preemptive multitasking, GUI, C++

— Software: agenda, word processor, spreadsheet,
address book, email, web browser, calculator,
jotter, sketch, voice notes, Java

— Runs for ~1 month on 2 AA batteries
— Reliable: runs for years without rebooting...

» Small, efficient, power-aware and robust code

* Focus on telephony and soft real time systems
— Often run under a hard real time OS using a two-level scheduler
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Summary

By now you should...

» Be thinking about the system issues, and how features that
improve general purpose performance hinder real time jobs

* Be thinking about the constraints on embedded systems, and
differences in how they are engineered

« Know a little about different systems that are available

Tomorrow: summary and overview of the module



