Low-Level Embedded Programming

Real-Time and Embedded Systems (M)
Lecture 18




Copyright © 2005 University of Glasgow

Lecture Outline

 Embedded systems programming
— Interrupt and timer latency
— Memory issues

* Protection
» Virtual memory

» Allocation, locking, leaks and garbage collection
» Caches

— Power, size and performance constraints
— System longevity
— Development and debugging

« Example environments



rsity of Glasgow

Copyright © 2005 Unive

Embedded Systems Programming

* Some real-time embedded systems are complex, implemented on
high-performance hardware

e Others must be implemented on hardware chosen to be low cost,
low power, light-weight and robust; with performance a distant
concern

— Often-times implemented in C or assembler, fitting within a few kilobytes
of memory

— Correctness a primary concern, efficiency a close second

 How does resource constrained hardware affect applications?



Copyright © 2005 University of Glasgow

Interrupt and Timed Task Latency

« Key issue in real-time systems 1s time to respond to events

« Should have predictable worst-case bounds, otherwise cannot
reason about the system
— Both imterrupt latency and task scheduling latency

« Examples:

— Linux has ~600us typical interrupt handler latency, often runs with 100Hz
clock for task scheduling (i.e. 10000us latency)

* Long history of problems with system call latency, causing tasks to block for
hundreds of milliseconds on certain device accesses

» Resolved for most common devices, but still unpredictable (and long) latency
with uncommon hardware

— RTLinux claims a maximum 15us interrupt handler latency, all scheduled
tasks execute within at most 35us of their scheduled time

 Other hard real-time operating systems offer similar guarantees



Copyright © 2005 University of Glasgow

Interrupt and Timed Task Latency

 Why such a difference?

— Preemptable microkernel, with single address space
* No context switch, user-to-kernel mode, overhead

— No virtual memory or memory protection
* No paging delays
* No delays while page tables adjusted

— Device drivers designed with minimal non-preemptable sections
» Light-weight, prioritised, threads fire in response to interrupts

e Does 1t matter? It depends on the application...



Copyright © 2005 University of Glasgow

Memory Protection

 Many embedded systems use a single flat address space
— Applications, shared libraries, kernel, devices all visible
— A system or library call 1s equivalent to a function call

Application “ ‘ ‘ “ H ‘ Kernel I

— Makes system calls, interrupts, very fast and predictable
* No context switch to kernel mode
» No adjustment of MMU page tables
— Consequences
» No isolation between applications, or between applications and the kernel
* A change to one part implies that the entire system has to be revalidated;
difficult as systems become larger
— Some systems offer limited protection
* Read only mapping of program/system text; IRQ vectors
» Optional full memory protection




Copyright © 2005 University of Glasgow

Memory Protection

« Consequences of offering memory protection:
— Unpredictable latency
« May take longer to task switch to/from a protected task
— Memory overhead
» Protection provided on a per-page basis, leads to wastage
* Overhead of maintaining the page tables and protection maps

— Code overhead

» Operating system is required to trap illegal access and recover system to a safe
state

« Which is easiest: proving the system correct, or writing handlers
to safely recover from all possible failures, delays?



rsity of Glasgow

Copyright © 2005 Unive

Virtual Memory: Address Translation

« Two aspects to virtual memory:
— Address translation
— Paging to disk

« Address translation 1s the act of making a fragmented block of
physical memory appear to be a single contiguous block

— Useful in dynamic systems: enables requests for large blocks of memory to
be allocated when there is no physically contiguous block available

— Adds overhead, since system must manage address translation tables
» Uses memory, increases context switch time

» Complicates DMA device access

« Better to pre-allocate static memory pools for real-time tasks

— Manage the sub-division of address space within the application



Copyright © 2005 University of Glasgow

Virtual Memory: Paging to Disk

« Disk based virtual memory is supported by many systems that run
both real time and non-real time tasks

— Paging to disk clearly impact real-time performance

— Unpredictable delays, depending whether page 1s in memory or on disk

« Systems usually provide ability to (selectively) prevent paging

— Examples:

POSIX allows regions of memory to be locked into RAM and preventing from
paging using mlock (addr, len) and mlockall ()

Windows allows all memory owned by a particular thread to be locked

LynxOS allows pages of higher priority tasks are locked in memory, but new
allocations can page out memory belonging to lower priority tasks



Copyright © 2005 University of Glasgow

Memory Leaks and Garbage Collection

 An embedded system has to run for a long period of time, without
user intervention

« Resource leaks can be problematic:

— C programs typically have memory leaks due to programmer error
 Significant problem in long-lived or resource constrained systems
 Better to pre-allocate static buffers, avoid the chance of a memory leak
* Be very careful to free memory and other resources after use
* Do you always check for out of memory errors? And recover gracefully?

— Remember the recovery code cannot allocate memory
— This may include the stack frame needed to make a function call!

— Modern languages use garbage collection to avoid resource leaks

* Has a poor reputation due to unpredictable delays when collection occurs

* However, real-time garbage collection algorithms — with predictable latency, at
controlled times — do exist
— Make sure the garbage collector is appropriate for the application



Copyright © 2005 University of Glasgow

Memory: What is a Small System?

 Embedded systems often very constrained compared to typical

desktop computers

— You may be running on an 8 bit processor, with kilobytes of RAM

— Operating system typically optimised for the environment, provides only
minimal required functions

» The QNX 4.x microkernel is approximately 12kbytes in size

* The VRTX microkernel is typically 4-8kbytes in size

— For comparison:

# uname -srm
Linux 2.4.25 ié686

# cat tst.c
int main ()

{
return O;
}
# gcc tst.c -o tst
# 1s -1 tst
-rwxrwx--- 1 csp csp ,4507 Mar 16 00:51 tst



Copyright © 2005 University of Glasgow

Memory: What is a Small System?

Example: Renesas H8/3217 processor

16 - 60kBytes ROM

512Bytes - 2kBytes SRAM
10-16MHz clock

1 x 16-bit timer; 3 x 8-bit timer
1 x Watchdog timer

2 x UARTS; 2 x I?C interfaces

The H8/3217 provides a solution to
applications where a cost effective
solution with up to 4 channels of
serial communications is required

Monitors, Televisions
Radios, Stereo systems
Set Top Box system controllers

The H8/3217 1s a member of the
H8/300 series of high performance
8/16-bit CPU’s. This device 1s used
in applications where a high level of
communications capability is
required

The combination of 2 high speed
UARTS capable of transmitting data
asynchronously at 500k baud and
two channels of I’C capable of
transmitting at over 400k bits per
second make this devices a powerful
communications processor

[Adapted from Renesas website]



Copyright © 2005 University of Glasgow

Effects of Cache

* You may be running on a more modern processor

— PowerPC 405CR embedded processor
32 bit RISC processor, compatible with desktop PowerPC
133MHz or 266MHz clock speed

500mW power consumption

— Compare: Pentium M (“Centrino”) processor consumes up to 24.5W

CodePack™ compression of executables

Likely has several megabytes of memory
» [Various types of PowerPC and ARM processors commonly used]

— Relatively cheap, comparatively high performance, low power

e Has a small cache, which you may want to disable:
— Processor and memory speeds are closely matched
« Compare to desktop processor, with order magnitude difference
— Simpler to predict memory access times without the cache
— Cache improves average response times, but introduces unpredictability



rsity of Glasgow

Copyright © 2005 Unive

Power, Size and Performance Constraints

Embedded systems often battery powered or power sensitive
— What influences power consumption?

« Power consumption « (clock speed)?

* Memory size and processor utilization

* May have to be physically small and/or robust
e May have strict heat production limits

e May have strict cost constraints

— That processor 1s slower, but 10¢ cheaper, the production run 1s 1 million,
you paid your salary for the next couple of years...

» Used to throwing hardware at a problem, and writing inefficient —
but easy to implement — software

— Software engineering based around programmer productivity
— The constraints may be different in the embedded world...



rsity of Glasgow

Copyright © 2005 Unive

System Longevity

 Embedded systems often safety critical or difficult to upgrade

Medical devices CD or DVD player
Automotive or flight control Washing machine
Railway signalling Microwave oven
Industrial machinery Pacemaker

« May need to run for several years, in environment where failures
either kill people, or are expensive to fix
— Can you guarantee your system will run for 10 years without crashing?
— Do you check all the return codes and handle all errors?

— Fail gracefully?



rsity of Glasgow

Copyright © 2005 Unive

Development and Debugging

 Embedded systems typically too limited to run a compiler
* Develop using a cross compiler running on a PC, download code

using a serial line, or by burning a flash ROM and installing

» Often limited debugging facilities:
— Serial line connection to host PC

— LEDs on the development board
— Logic analyser or other hardware test equipment



rsity of Glasgow

Copyright © 2005 Unive

Example Environments

« VxWorks
e QNX
e Symbian



Copyright © 2005 University of Glasgow

VxXWorks

* Monolithic kernel; POSIX with real time extensions
* Proprietary APIs to control more advanced features

— Message queues with timeouts
— Control of priority inheritance on semaphores
— User processes can enable/disable interrupts

» Defaults to a single address space, with address translation
— Processes can request memory protection, if desired
— Processes can control which regions of memory are cached

* Focus on hard real time, deeply embedded systems

— Runs on the Mars rovers, Pathfinder

 Pathfinder had problems due to uncontrolled priority inversion causing some
tasks to miss their deadlines; caused system to repeatedly reset to safe state

* Enough debugging code left in that the problem could be resolved, and new
code uploaded



rsity of Glasgow

Copyright © 2005 Unive

QNX

e Pure microkernel system

— Many optional components, scales from 12kbytes to run on high end SMP
machines with gigabytes of memory

« Native support for threads with a single address space
— Memory protection optional

« Message passing abstraction for inter-task communication
— Very efficient, due to single address space
— Tasks inherit priority of the messages
— Messages can be blocking, variable sized, or fixed size non-blocking

 Network stack, TCP/IP

* Full GUI, web browsers, Java, etc

« Focus on real time embedded, but user-facing, systems



rsity of Glasgow

Copyright © 2005 Unive

Psion/Symbian

« Example: Psion series Smx — precursor to Symbian mobile phones
— 16M RAM, 16M ROM
— 36MHz ARM710 processor
— Preemptive multitasking, GUI, C++

— Software: agenda, word processor, spreadsheet,
address book, email, web browser, calculator,
jotter, sketch, voice notes, Java

— Runs for ~1 month on 2 AA batteries
— Reliable: runs for years without rebooting...

» Small, efficient, power-aware and robust code

* Focus on telephony and soft real time systems
— Often run under a hard real time OS using a two-level scheduler



rsity of Glasgow

Copyright © 2005 Unive

Summary

By now you should...

» Be thinking about the system issues, and how features that
improve general purpose performance hinder real time jobs

* Be thinking about the constraints on embedded systems, and
differences in how they are engineered

« Know a little about different systems that are available

Tomorrow: summary and overview of the module



