
Implementing Resource Access 
Control 

Real-Time and Embedded Systems (M) 
Lecture 14 
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Lecture Outline 

•  Resources access control (cont’d): 
–  Enhancing the priority ceiling protocol 

•  Stack-based priority ceiling protocol 
•  Ceiling priority protocol 

–  Resource access control for dynamic priority systems 

•  Implementing resource access control 
–  Locking primatives 

•  Semaphores 
•  Mutexes 
•  Typical priority inheritance features 

–  Messages, signals and events 
•  Priority inheritance features for messaging 
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Enhancing the Priority Ceiling Protocol 

•  The basic priority ceiling protocol gives good performance, but 
the defining rules are complex 

•  Also, the protocol can result 
in high context switch overheads  
due to frequent blocking if many  
jobs contend for resources 

J3 

J2 

J1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
J5 19 20 

J4 

•  This has led to two modifications to the protocol: 
–  The stack-based priority ceiling protocol 
–  The ceiling priority protocol 
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Stack Based Priority Ceiling Protocol 

•  Based on original work to allow jobs to share a run-time stack, 
extended to control access to other resources 

•  Defining rules: 
–  Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated each time a 

resource is allocated or freed 
•  Π(t) current priority ceiling of all resources in currently use 
•  Ω non-existing lowest priority level 

–  Scheduling:  
•  After a job is released, it is blocked from starting execution until its assigned 

priority is higher than Π(t) 
•  Non-blocked jobs are scheduled in a pre-emptive priority manner 
•  Tasks never self-yield 

–  Allocation: Whenever a job requests a resource, it is allocated the resource 
•  The allocation rule looks greedy, but the scheduling rule is not 
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Stack Based Priority-Ceiling Protocol 

Job ri ei πi Critical Sections 
J1 7 3 1 [Red; 1] 
J2 5 3 2 [Blue; 1] 

J3 4 2 3 

J4 2 6 4 [Red; 4 [Blue; 1.5]] 

J5 0 6 5 [Blue; 4] 

•  Consider an example system, with 
parameters are shown on the right → 

•  Jobs J1, J2, J4 and J5 attempt to lock 
their first resource after one unit of 
execution; J4 accesses blue after an 
additional 2 units of execution 

J3 

J2 

J1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
J5 

19 20 

J4 

Context switches are reduced 
compared to the basic priority 
ceiling protocol; no jobs finish  
later, but many jobs start later 

Jobs blocked 
from starting 
since πi < Π 

Π=2 
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Stack Based Priority Ceiling Protocol 

•  Characteristics: 
–  When a job starts to run, all the resource it will ever need are free (since 

otherwise the ceiling would be ≥ priority) 
•  No job ever blocks waiting for a resource once its execution has begun 
•  Implies low context switch overhead 

–  When a job is pre-empted, all the resources the pre-empting job will require 
are free, ensuring it will run to completion 

•  Deadlock can never occur 
–  Longest blocking time provably not worse than the basic priority ceiling 

protocol 
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Ceiling Priority Protocol 

•  A similar algorithm is the ceiling priority protocol 
•  Defining rules: 

–  Scheduling:  
•  Every job executes at its assigned priority when it does not hold any resource. 

Jobs of the same priority are scheduled on a FIFO basis 
•  The priority of each job holding resources is equal to the highest of the priority 

ceilings of all resources held by the job 
–  Allocation: whenever a job requests a resource, it is allocated 

•  When jobs never self-yield, gives identical schedules to the stack-
based priority ceiling protocol 

•  Again, simpler than the basic priority ceiling protocol 
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Choice of Priority Ceiling Protocol 

•  If tasks never self yield, the stack based priority ceiling protocol or 
the ceiling priority protocol is a better choice than the basic 
priority ceiling protocol 
–  Simpler 
–  Reduce number of context switches 

•  Stack based can be used to allow sharing of the run-time stack, to 
save memory resources 

•  The ceiling priority protocol is included in the real-time systems 
annex of Ada95 
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Resources in Dynamic Priority Systems 

•  The priority ceiling protocols assume fixed priority scheduling 
•  In a dynamic priority system, the priorities each periodic tasks 

change over time, while the set of resources required by each task 
remains constant 
–  As a consequence, the priority ceiling of each resource changes over time 
–  Example: 

0 1 2 3 4 5 6 7 8 9 10 

EDF schedule: 
    T1 = (2, 0.9) 
    T2 = (5, 2.3) 

T2 

T1 

π(T1) = 1 π(T1) = 2 

–  T1 uses resource X, but T2 does not 
–  Priority ceiling of X us 1 for 0 ≤ t ≤ 4, becomes 2 for 4 ≤ t ≤ 5, etc.  

even though the set of resources required by the tasks remains unchanged 
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Resources in Dynamic Priority Systems 

•  If a system is job-level fixed priority, but task-level dynamic 
priority, a priority ceiling protocol can still be applied 
–  Each job in a task has a fixed priority once it is scheduled, but may be 

scheduled at different priority to other jobs in the task 
•  Example: Earliest Deadline Scheduling 

–  Update the priority ceilings of all jobs each time a new job is introduced; 
use until updated on next job release 

•  Has been proven to work and have the same properties as priority 
ceiling protocol in fixed priority systems 
–  But: very inefficient, since priority ceilings updated frequently 
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Implementing Resource Access Control 

•  Have focussed on resource access control algorithms which can be 
implemented by an operating system 

•  How are these made available to applications? 
–  Some implemented by the operating system 
–  Some implemented at the application level 
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Resource Types and Locking 

•  Program objects and data structures 
•  Files 
•  Devices 
•  Network interfaces 

Access arbitrated 
by the operating 
system 

Need to be locked by 
applications to ensure 
exclusive access 

Semaphores 

Mutexes 

Condition Variables 

Provided by POSIX 
and/or by real-time 
operating systems 

Message Queues 
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POSIX Semaphores 

•  Semaphores provide a simple locking abstraction: 
 

 int sem_init(sem_t *sem, int inter_process, unsigned init_val); 
 int sem_destroy(sem_t *sem); 
 int sem_wait(sem_t *sem); 
 int sem_trywait(sem_t *sem); 
 int sem_post(sem_t *sem); 

 

•  Embed a semaphore within an object for resource access control: 
  
 struct my_object { 

 sem_t   lock; 
 char   *data;  // For example… 
 int     data_len; 

} 
struct my_object *m = malloc(sizeof(my_object)); 
sem_init(&m->lock, 1, 1); 

 

•  No special real-time features, priority control 
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POSIX Mutexes 

•  A higher level  locking mechanism for real-time applications is a 
POSIX mutex, which controls priority during resource access 
–  As with semaphores, a mutex is embedded in an object at a location of the 

programmers choosing to control access to that object/resource 

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr); 
int pthread_mutex_destroy(pthread_mutex_t *mutex); 
int pthread_mutex_lock(pthread_mutex_t *mutex); 
int pthread_mutex_trylock(pthread_mutex_t *mutex); 
int pthread_mutex_unlock(pthread_mutex_t *mutex); 
 
int pthread_mutexattr_init(pthread_mutexattr_t *attr); 
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr); 
 
int pthread_mutexattr_setprotocol(pthread_mutex_attr_t *attr, int  proto); 
int pthread_mutexattr_getprotocol(pthread_mutex_attr_t *attr, int *proto); 
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POSIX Mutexes: Priority Inheritance 

•  A useful feature of POSIX threads is the ability to specify a 
resource access protocol for a mutex 
–  Use pthread_mutexattr_setprotocol() during mutex creation 

•  PTHREAD_PRIO_INHERIT Priority inheritance protocol applies 
•  PTHREAD_PRIO_PROTECT Priority ceiling protocol applies 
•  PTHREAD_PRIO_NONE  Priority remains unchanged 

–  If the priority ceiling protocol is used, can adjust the ceiling to match 
changes in thread priority: 
•  pthread_mutexattr_getprioceiling(…) 
•  pthread_mutexattr_setprioceiling(…) 

•  Useful in conjunction with real-time scheduling extensions 
–  Allow implementation of fixed priority scheduling with a resource access 

control protocol 
–  Controls priority inversion, scheduling; allows reasoning about a system 
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POSIX Condition Variables 

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr); 
int pthread_cond_destroy(pthread_cond_t *cond); 
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex); 
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex 
                           struct timespec *wait_time); 
int pthread_cond_signal(pthread_cond_t *cond); 
int pthread_cond_broadcast(pthread_cond_t *cond); 

•  Combine a condition variable with a mutex to wait for a 
condition to be satisfied: 

 lock associated mutex 
 while (condition not satisfied) { 
     wait on condition variable 
 } 
 do work 
 unlock associated mutex 

(timed wait with priority inheritance) 
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Messages, Signals and Events 

•  In addition to controlling access to resources, tasks often need to 
communicate information to other tasks 

•  Can be implemented using a shared data structure – a resource – 
that is managed as described previously 
–  Example: a queue protected by a mutex and condition variable 
–  Requires synchronisation between tasks 

•  May wish to communicate with another task without an explicit 
synchronisation step 
–  Send another task a message 
–  Signal another task that an event has occurred 
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POSIX Message Queues 

•  A message queue abstraction provided for this purpose: 

 mpd_t mq_open(char *mqname, int flags, mode_t mode,  
                   struct mq_attr attrs); 

 int   mq_close(mpd_t mq); 

 int   mq_unlink(char *mqname); 
 
 int   mq_send(mpd_t mq, char *msg, size_t len, unsigned prio); 
 int   mq_receive(mqd_t mq, char *msg, size_t len, unsigned *prio); 

 
 int  mq_setattr(pqd_t mq, struct mq_attr *newattr,  
                          struct mq_attr *oldattr); 

 int  mq_getattr(mpd_t mq, struct mq_attr *attrbuf); 
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POSIX Message Queues 

•  Message queues are usually blocking: 
–  mq_send() will block until there is space in the queue to send a message 
–  mq_receive() will delay the caller until there is a message 

•  Can be set to non-blocking, if desired 
•  A receiver can register to receive a signal when a queue has data 

to receiver, rather than blocking 

•  Messages have priority, inserted in the queue in priority order 
•  Messages with equal priority are delivered in FIFO order 
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Message Based Priority Inheritance 

•  Messages not read until receiving thread executes mq_receive() 
•  Problem: 

–  Sending a high priority message to a low priority thread 
–  The thread will not be scheduled to receive the message 

•  Solution: message based priority inheritance 
–  Assume message priorities map to task priorities 
–  When a task is sent a message, it provides a one-shot work thread to process 

that message, which inherits the priority of the message 
–  Allows message processing to be scheduled as any other job 
–  Implemented by some RTOS (e.g. QNX); not common 

•  Typically simulate using a queue with a priority inheriting mutex 
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Signalling Events 

•  Need a way of signalling a task that an event has occurred 
–  Completion of asynchronous I/O request 
–  Expiration of a timer 
–  Receipt of a message 
–  Etc. 

•  Many different approaches: 
–  Unix signals 

•  Event number N has occurred; no parameters; unreliable (non-queued) 
–  POSIX signals 

•  Allow data to be piggybacked onto the signal (a void * pointer) 
•  Signals are queued, and not lost if a second signal arrives while the first is being 

processed 
•  Signals are prioritised 

–  Windows asynchronous procedure call and event loop 
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Signalling Events 

•  Signals are delivered asynchronously at high priority 
–  As a result of a timer event 
–  As a result of a kernel operation completing 
–  As a result of action by another process 

•  High overhead: require a kernel trap, context switch, etc 
•  Add unpredictable delay 

–  Executing process is delayed when a signal occurs, by the time taken to 
switch to the signal handler of the signalled task, run the signal handler, and 
switch back to the original task 

•  May be better to use synchronous communication where possible 
in real time systems, since easier to predict 
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Implementing Resource Access Control 

•  As seen, many approaches to implementing resource access 
control 

•  POSIX provides useful baseline functionality 
–  Priority scheduling abstraction, to implement Rate Monotonic schedules 
–  A mutex abstraction using either priority inheritance or priority ceiling 

protocols to arbitrate resource access 

•  Similar, sometimes more advanced features, provided by other 
real-time operating systems 
–  E.g The Ada language supports resource access control with the priority 

ceiling protocol 
–  E.g. QNX support message based priority inheritance 
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Summary 

•  Illustrated operation of additional resource access control 
protocols, simplifying priority ceiling protocol 

•  Described some practical methods used to implement resource 
access control: 
–  Use of POSIX real-time extensions and mutexes for locking, to directly 

implement the ideas described 
–  Other mechanisms: semaphores, message queues, signals, etc.  


