
Implementing Resource Access
Control

Real-Time and Embedded Systems (M)
Lecture 14

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Resources access control (cont’d):
–  Enhancing the priority ceiling protocol

•  Stack-based priority ceiling protocol
•  Ceiling priority protocol

–  Resource access control for dynamic priority systems

•  Implementing resource access control
–  Locking primatives

•  Semaphores
•  Mutexes
•  Typical priority inheritance features

–  Messages, signals and events
•  Priority inheritance features for messaging

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Enhancing the Priority Ceiling Protocol

•  The basic priority ceiling protocol gives good performance, but
the defining rules are complex

•  Also, the protocol can result
in high context switch overheads
due to frequent blocking if many
jobs contend for resources

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5 19 20

J4

•  This has led to two modifications to the protocol:
–  The stack-based priority ceiling protocol
–  The ceiling priority protocol

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Stack Based Priority Ceiling Protocol

•  Based on original work to allow jobs to share a run-time stack,
extended to control access to other resources

•  Defining rules:
–  Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated each time a

resource is allocated or freed
•  Π(t) current priority ceiling of all resources in currently use
•  Ω non-existing lowest priority level

–  Scheduling:
•  After a job is released, it is blocked from starting execution until its assigned

priority is higher than Π(t)
•  Non-blocked jobs are scheduled in a pre-emptive priority manner
•  Tasks never self-yield

–  Allocation: Whenever a job requests a resource, it is allocated the resource
•  The allocation rule looks greedy, but the scheduling rule is not

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Stack Based Priority-Ceiling Protocol

Job ri ei πi Critical Sections
J1 7 3 1 [Red; 1]
J2 5 3 2 [Blue; 1]

J3 4 2 3

J4 2 6 4 [Red; 4 [Blue; 1.5]]

J5 0 6 5 [Blue; 4]

•  Consider an example system, with
parameters are shown on the right →

•  Jobs J1, J2, J4 and J5 attempt to lock
their first resource after one unit of
execution; J4 accesses blue after an
additional 2 units of execution

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

J4

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish
later, but many jobs start later

Jobs blocked
from starting
since πi < Π

Π=2

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Stack Based Priority Ceiling Protocol

•  Characteristics:
–  When a job starts to run, all the resource it will ever need are free (since

otherwise the ceiling would be ≥ priority)
•  No job ever blocks waiting for a resource once its execution has begun
•  Implies low context switch overhead

–  When a job is pre-empted, all the resources the pre-empting job will require
are free, ensuring it will run to completion

•  Deadlock can never occur
–  Longest blocking time provably not worse than the basic priority ceiling

protocol

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Ceiling Priority Protocol

•  A similar algorithm is the ceiling priority protocol
•  Defining rules:

–  Scheduling:
•  Every job executes at its assigned priority when it does not hold any resource.

Jobs of the same priority are scheduled on a FIFO basis
•  The priority of each job holding resources is equal to the highest of the priority

ceilings of all resources held by the job
–  Allocation: whenever a job requests a resource, it is allocated

•  When jobs never self-yield, gives identical schedules to the stack-
based priority ceiling protocol

•  Again, simpler than the basic priority ceiling protocol

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Choice of Priority Ceiling Protocol

•  If tasks never self yield, the stack based priority ceiling protocol or
the ceiling priority protocol is a better choice than the basic
priority ceiling protocol
–  Simpler
–  Reduce number of context switches

•  Stack based can be used to allow sharing of the run-time stack, to
save memory resources

•  The ceiling priority protocol is included in the real-time systems
annex of Ada95

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Resources in Dynamic Priority Systems

•  The priority ceiling protocols assume fixed priority scheduling
•  In a dynamic priority system, the priorities each periodic tasks

change over time, while the set of resources required by each task
remains constant
–  As a consequence, the priority ceiling of each resource changes over time
–  Example:

0 1 2 3 4 5 6 7 8 9 10

EDF schedule:
 T1 = (2, 0.9)
 T2 = (5, 2.3)

T2

T1

π(T1) = 1 π(T1) = 2

–  T1 uses resource X, but T2 does not
–  Priority ceiling of X us 1 for 0 ≤ t ≤ 4, becomes 2 for 4 ≤ t ≤ 5, etc.

even though the set of resources required by the tasks remains unchanged

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Resources in Dynamic Priority Systems

•  If a system is job-level fixed priority, but task-level dynamic
priority, a priority ceiling protocol can still be applied
–  Each job in a task has a fixed priority once it is scheduled, but may be

scheduled at different priority to other jobs in the task
•  Example: Earliest Deadline Scheduling

–  Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

•  Has been proven to work and have the same properties as priority
ceiling protocol in fixed priority systems
–  But: very inefficient, since priority ceilings updated frequently

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing Resource Access Control

•  Have focussed on resource access control algorithms which can be
implemented by an operating system

•  How are these made available to applications?
–  Some implemented by the operating system
–  Some implemented at the application level

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Resource Types and Locking

•  Program objects and data structures
•  Files
•  Devices
•  Network interfaces

Access arbitrated
by the operating
system

Need to be locked by
applications to ensure
exclusive access

Semaphores

Mutexes

Condition Variables

Provided by POSIX
and/or by real-time
operating systems

Message Queues

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Semaphores

•  Semaphores provide a simple locking abstraction:

 int sem_init(sem_t *sem, int inter_process, unsigned init_val);
 int sem_destroy(sem_t *sem);
 int sem_wait(sem_t *sem);
 int sem_trywait(sem_t *sem);
 int sem_post(sem_t *sem);

•  Embed a semaphore within an object for resource access control:

 struct my_object {

 sem_t lock;
 char *data; // For example…
 int data_len;

}
struct my_object *m = malloc(sizeof(my_object));
sem_init(&m->lock, 1, 1);

•  No special real-time features, priority control

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Mutexes

•  A higher level locking mechanism for real-time applications is a
POSIX mutex, which controls priority during resource access
–  As with semaphores, a mutex is embedded in an object at a location of the

programmers choosing to control access to that object/resource

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_setprotocol(pthread_mutex_attr_t *attr, int proto);
int pthread_mutexattr_getprotocol(pthread_mutex_attr_t *attr, int *proto);

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Mutexes: Priority Inheritance

•  A useful feature of POSIX threads is the ability to specify a
resource access protocol for a mutex
–  Use pthread_mutexattr_setprotocol() during mutex creation

•  PTHREAD_PRIO_INHERIT Priority inheritance protocol applies
•  PTHREAD_PRIO_PROTECT Priority ceiling protocol applies
•  PTHREAD_PRIO_NONE Priority remains unchanged

–  If the priority ceiling protocol is used, can adjust the ceiling to match
changes in thread priority:
•  pthread_mutexattr_getprioceiling(…)
•  pthread_mutexattr_setprioceiling(…)

•  Useful in conjunction with real-time scheduling extensions
–  Allow implementation of fixed priority scheduling with a resource access

control protocol
–  Controls priority inversion, scheduling; allows reasoning about a system

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Condition Variables

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex
 struct timespec *wait_time);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

•  Combine a condition variable with a mutex to wait for a
condition to be satisfied:

 lock associated mutex
 while (condition not satisfied) {
 wait on condition variable
 }
 do work
 unlock associated mutex

(timed wait with priority inheritance)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Messages, Signals and Events

•  In addition to controlling access to resources, tasks often need to
communicate information to other tasks

•  Can be implemented using a shared data structure – a resource –
that is managed as described previously
–  Example: a queue protected by a mutex and condition variable
–  Requires synchronisation between tasks

•  May wish to communicate with another task without an explicit
synchronisation step
–  Send another task a message
–  Signal another task that an event has occurred

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Message Queues

•  A message queue abstraction provided for this purpose:

 mpd_t mq_open(char *mqname, int flags, mode_t mode,
 struct mq_attr attrs);

 int mq_close(mpd_t mq);

 int mq_unlink(char *mqname);

 int mq_send(mpd_t mq, char *msg, size_t len, unsigned prio);
 int mq_receive(mqd_t mq, char *msg, size_t len, unsigned *prio);

 int mq_setattr(pqd_t mq, struct mq_attr *newattr,
 struct mq_attr *oldattr);

 int mq_getattr(mpd_t mq, struct mq_attr *attrbuf);

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX Message Queues

•  Message queues are usually blocking:
–  mq_send() will block until there is space in the queue to send a message
–  mq_receive() will delay the caller until there is a message

•  Can be set to non-blocking, if desired
•  A receiver can register to receive a signal when a queue has data

to receiver, rather than blocking

•  Messages have priority, inserted in the queue in priority order
•  Messages with equal priority are delivered in FIFO order

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Message Based Priority Inheritance

•  Messages not read until receiving thread executes mq_receive()
•  Problem:

–  Sending a high priority message to a low priority thread
–  The thread will not be scheduled to receive the message

•  Solution: message based priority inheritance
–  Assume message priorities map to task priorities
–  When a task is sent a message, it provides a one-shot work thread to process

that message, which inherits the priority of the message
–  Allows message processing to be scheduled as any other job
–  Implemented by some RTOS (e.g. QNX); not common

•  Typically simulate using a queue with a priority inheriting mutex

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Signalling Events

•  Need a way of signalling a task that an event has occurred
–  Completion of asynchronous I/O request
–  Expiration of a timer
–  Receipt of a message
–  Etc.

•  Many different approaches:
–  Unix signals

•  Event number N has occurred; no parameters; unreliable (non-queued)
–  POSIX signals

•  Allow data to be piggybacked onto the signal (a void * pointer)
•  Signals are queued, and not lost if a second signal arrives while the first is being

processed
•  Signals are prioritised

–  Windows asynchronous procedure call and event loop

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Signalling Events

•  Signals are delivered asynchronously at high priority
–  As a result of a timer event
–  As a result of a kernel operation completing
–  As a result of action by another process

•  High overhead: require a kernel trap, context switch, etc
•  Add unpredictable delay

–  Executing process is delayed when a signal occurs, by the time taken to
switch to the signal handler of the signalled task, run the signal handler, and
switch back to the original task

•  May be better to use synchronous communication where possible
in real time systems, since easier to predict

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing Resource Access Control

•  As seen, many approaches to implementing resource access
control

•  POSIX provides useful baseline functionality
–  Priority scheduling abstraction, to implement Rate Monotonic schedules
–  A mutex abstraction using either priority inheritance or priority ceiling

protocols to arbitrate resource access

•  Similar, sometimes more advanced features, provided by other
real-time operating systems
–  E.g The Ada language supports resource access control with the priority

ceiling protocol
–  E.g. QNX support message based priority inheritance

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Illustrated operation of additional resource access control
protocols, simplifying priority ceiling protocol

•  Described some practical methods used to implement resource
access control:
–  Use of POSIX real-time extensions and mutexes for locking, to directly

implement the ideas described
–  Other mechanisms: semaphores, message queues, signals, etc.

