
Resource Access Control

Real-Time and Embedded Systems (M)
Lecture 13

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Definitions of resources
•  Resources access control:

–  Non-preemptable critical sections
–  Basic priority inheritance protocol
–  Basic priority ceiling protocol

•  Material corresponds to chapter 8 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Resources

•  Resources may represent:
–  Hardware devices such as sensors and actuators
–  Disk or memory capacity, buffer space
–  Software resources: mutexes, locks, queues, etc.

•  Assume a system with ρ types of resource named R1, R2, …, Rρ
–  Each resource comprises nk indistinguishable units

•  Resources with a (practically) infinite number of units have no effect on
scheduling; and so are ignored

–  Each unit of resource is used in a non-preemptable and mutually exclusive
manner; resources are serially reusable

–  If a resource can be used by more than one job at a time, we model that
resource as having many units, each used mutually exclusively

•  The system must control access to the resources

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Locks and Critical Sections

•  Assume a lock-based concurrency control mechanism
–  A job wanting to use nk units of resource Rk locks L(Rk, nk) the resource
–  When the job is finished with the resources, it unlocks them: U(Rk, nk)
–  If a lock request fails, the requesting job is blocked and loses the processor;

when the requested resource becomes available, it is unblocked
•  A job holding a lock cannot be preempted by a higher priority job needing that

lock

•  The segment of a job that begins at a lock and ends at a matching
unlock is a critical section
–  Use the expression [R, n; e] to represent a critical section regarding n units

of R, with the critical section requiring e units of execution time
–  Critical sections may nest if a job needs multiple simultaneous resources

•  E.g. lock R1, then lock R2, then lock R3, …, unlock R3, unlock R2, unlock R1 is
represented as [R1, n1; e1 [R2, n2; e2 [R3 , n3; e3]]]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

EDF schedule of J1, J2 and
J3 sharing a resource R
protected by locks. Red
lines indicate release times
and deadlines of jobs.
Contention for R delays
the higher priority jobs

Contention for Resources

•  Two jobs conflict with one another if some of the resources they
require are of the same type; they contend for a resource if one job
requests a resource that the other job has already been granted

J1

J2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J3

Preempt J3

J2 blocks
due to lock
on resource

Preempt J3

J1 blocks
due to lock
on resource

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Priority Inversion

•  Priority inversion occurs when a low-priority job executes while
some ready higher-priority job waits

•  Contention for resources can cause priority inversions to occur,
even if the jobs are preemptable, since a lower-priority job holding
a lock on a resource will prevent a higher-priority job requiring
that resource from executing

J1

J2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J3

Priority inversion

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deadlock

•  Deadlock can result from piecemeal acquisition of resources;
classic example of two jobs needing resources RX and RY
–  If one job acquires locks in the order RX then RY, and the other job acquires

them in the opposite order, we can end up with a deadlock

–  The classic solution is to impose a fixed acquisition order over the set of
lockable resources, and all jobs attempt to acquire the resources in that
order (typically LIFO order)

J1

J2

J1 wants to access blue after 2 units of
execution, then red after a further 1 unit

J2 wants to access red after 1 unit of
execution, then blue after a further 3 units

Deadlock

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Timing Anomalies

•  As seen, contention for resources can cause timing anomalies due
to priority inversion and deadlock

•  Unless controlled, these anomalies can be arbitrary duration, and
can seriously disrupt system timing

•  Cannot eliminate these anomalies, but several protocols exist to
control them:
–  Non-preemptable Critical Sections
–  Priority inheritance protocol
–  Basic priority ceiling protocol
–  Stack-based priority ceiling protocol

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Non-preemptable Critical Sections

•  Simplest resource access control protocol: when a jobs acquires a
resource it is scheduled with highest priority in a non-preemptable
manner

•  Disadvantage: every job can be blocked by every lower-priority
job with a critical section, even if there is no resource conflict

⇒ Very poor timing performance

Priority scheduled: J1
has highest priority.
Shading indicates the
critical sections, red
lines indicate release
times for the jobs.

J3 locks the resource and significantly
delays execution of the other two jobs

J1

J2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J3

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Priority-Inheritance Protocol

•  Aim: to adjust the scheduling priorities of jobs during resource
access, to reduce the duration of timing anomalies

•  Constraints:
–  Works with any pre-emptive, priority-driven scheduling algorithm
–  Does not require any prior knowledge of the jobs’ resource requirements
–  Does not prevent deadlock, but if some other mechanism used to prevent

deadlock, ensures that no job can block indefinitely due to uncontrolled
priority inversion

•  We discuss the basic priority-inheritance protocol which assumes
there is only 1 unit of resource
–  The book discusses how to generalize this to arbitrary amounts of resources

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Inheritance Protocol

•  Assumptions (for all of the following protocols):
–  Each resource has only 1 unit
–  The priority assigned to a job according to a standard scheduling algorithm

is its assigned priority
–  At any time t, each ready job Jk is scheduled and executes at its current

priority, πk(t), which may differ from its assigned priority and may vary
with time

•  The current priority πl(t) of a job Jl may be raised to the higher priority πh(t) of
another job Jh

•  In such a situation, the lower-priority job Jl is said to inherit the priority of the
higher-priority job Jh, and Jl executes at its inherited priority πh(t)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Inheritance Protocol

•  Jobs are pre-emptively scheduled on the processor in a priority-
driven manner according to their current priorities
–  On release time, the current priority of a job is equal to its assigned priority
–  The current priority remains equal to the assigned priority, except when the

priority-inheritance rule is invoked
–  Priority-inheritance rule:

•  When the requesting job, J, becomes blocked, the job Jl which blocks J inherits
the current priority π(t) of J

•  Jl executes at its inherited priority until it releases R; at that time, the priority of
Jl returns to its priority πl(tʹ′) at the time tʹ′ when it acquired the resource R

•  Resource allocation: when a job J requests a resource R at time t:

–  If R is free, R is allocated to J until J releases it
–  If R is not free, the request is denied and J is blocked
–  J is only denied R if the resource is held by another job

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Inheritance Protocol

Job ri ei πi Critical Sections
J1 7 3 1 [Red; 1]
J2 5 3 2 [Blue; 1]

J3 4 2 3

J4 2 6 4 [Red; 4 [Blue; 1.5]]

J5 0 6 5 [Blue; 4]

J4

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

•  Consider an example system, with
parameters are shown on the right →

•  Jobs J1, J2, J4 and J5 attempt to lock
their first resource after one unit of
execution; J4 accesses blue after an
additional 2 units of execution

Run with inherited priority

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

J4

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

Basic Priority-Inheritance Protocol

J2 directly blocked by J5 due
to the lock J5 has on the blue

resource

J3 preempted by J2

J3 blocked because J5
inherits priority of J2

Transitive blocking:
J5 blocks J4 blocks J1

Jobs may block for many difference reasons…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Inheritance Protocol

T Ready Queue Blocked Queue red blue execute
0 J5[5,6] - - - J5

1 J5[5,5] - - J5 J5

2 J4[4,6]; J5[5,4] - - J5 J4

3 J4[4,5]; J5[5,4] - J4 J5 J4

4 J3[3,2]; J4[4,4]; J5[5,4] - J4 J5 J3

5 J2[2,3]; J3[3,1]; J4[4,4]; J5[5,4] - J4 J5 J2

6 J5[2,4]; J3[3,1]; J4[4,4] J2[2,2] J4 J5 J5

7 J1[1,3]; J5[2,3]; J3[3,1]; J4[4,4] J2[2,2] J4 J5 J1

8 J4[1,4]; J5[2,3]; J3[3,1] J1[1,2]; J2[2,2] J4 J5 J4

9 J5[1,3]; J3[3,1] J4[1,3]; J1[1,2]; J2[2,2] J4 J5 J5

11 J4[1,3]; J3[3,1]; J5[5,1] J1[1,2]; J2[2,2] J4 J4 J4

13 J1[1,2]; J2[2,2]; J3[3,1]; J4[4,1]; J5[5,1] - J1 J2 J1

14 J1[1,1]; J2[2,2]; J3[3,1]; J4[4,1]; J5[5,1] - - J2 J1

15 J2[2,2]; J3[3,1]; J4[4,1]; J5[5,1] - - J2 J2

16 J2[2,1]; J3[3,1]; J4[4,1]; J5[5,1] - - - J2

17 J3[3,1]; J4[4,1]; J5[5,1] - - - J3

18 J4[4,1]; J5[5,1] - - - J4

19 J5[5,1] - - - J5

20 - - - - -

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-inheritance Protocol

•  Properties of the Priority-inheritance Protocol
–  Simple to implement, does not require prior knowledge of resource

requirements
–  Jobs exhibit different types of blocking

•  Direct blocking due to resource locks
•  Priority-inheritance blocking
•  Transitive blocking

–  Deadlock is not prevented
•  Although it can be prevented by using additional protocols in parallel

–  Can reduce blocking time compared to non-preemptable critical sections,
but does not guarantee to minimize blocking

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

•  Sometimes desirable to further reduce blocking times due to
resource contention

•  The basic priority-ceiling protocol provides a means to do this,
provided:
–  The assigned priorities of all jobs are fixed (e.g. RM scheduling, not EDF)
–  The resources required by all jobs are known a priori

•  Need two additional terms to define the protocol:
–  The priority ceiling of any resource Rk is the highest priority of all the jobs

that require Rk and is denoted by Π(Rk)
–  At any time t, the current priority ceiling Π(t) of the system is equal to the

highest priority ceiling of the resources that are in use at the time
–  If all resources are free, Π(t) is equal to Ω, a nonexistent priority level that

is lower than the lowest priority level of all jobs

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

•  Scheduling rules:
–  Jobs are scheduled in a preemptable priority-driven manner
–  On release time, the current priority of a job is equal to its assigned priority
–  The current priority remains equal to the assigned priority, except when the

priority-inheritance rule is invoked

•  Resource allocation rule:
–  When a job J requests a resource R held by another job, the request fails and

the requesting job blocks
–  When a job J requests a resource R at time t, and that resource is free:

•  If J’s priority π(t) is higher than current priority ceiling Π(t), R is allocated to J
•  If J’s priority π(t) is not higher than current priority ceiling Π(t), R is allocated

to J only if J is the job holding the resource(s) whose priority ceiling is equal to
Π(t); otherwise, the request is denied, and J becomes blocked

–  Unlike priority inheritance: can deny access to an available resource

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

•  Priority-inheritance rule:
–  When the requesting job, J, becomes blocked, the job Jl which blocks J

inherits the current priority π(t) of J
–  Jl executes at its inherited priority until the time when it releases every

resource whose priority ceiling is equal to or higher than π(t); at that time,
the priority of Jl returns to its priority πl(tʹ′) at the time tʹ′ when it was
granted the resource(s)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

Job ri ei πi Critical Sections
J1 7 3 1 [Red; 1]
J2 5 3 2 [Blue; 1]

J3 4 2 3

J4 2 6 4 [Red; 4 [Blue; 1.5]]

J5 0 6 5 [Blue; 4]

•  Consider an example system, with
parameters are shown on the right →

•  Jobs J1, J2, J4 and J5 attempt to lock
their first resource after one unit of
execution; J4 accesses blue after an
additional 2 units of execution

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

J4

Significant reduction
in execution time for
some tasks compared
to priority inheritance

Π=2

J4 requests red
but is denied,
since π4 < Π

J2 requests red
but is denied,
since π2 not > Π

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

T Ready Queue Blocked Queue Π red blue execute
0 J5[5,6] - Ω - - J5

1 J5[5,5] - 2 - J5 J5

2 J4[4,6]; J5[5,4] - 2 - J5 J4

3 J5[4,4] J4[4,5] 2 - J5 J5

4 J3[3,2]; J5[4,3] J4[4,5] 2 - J5 J3

5 J2[2,3]; J3[3,1]; J5[4,3] J4[4,5] 2 - J5 J2

6 J5[2,3]; J3[3,1] J2[2,2]; J4[4,5] 2 - J5 J5

7 J1[1,3]; J5[2,2]; J3[3,1] J2[2,2]; J4[4,5] 2 - J5 J1

8 J1[1,2]; J5[2,2]; J3[3,1] J2[2,2]; J4[4,5] 1 J1 J5 J1

9 J1[1,1]; J5[2,2]; J3[3,1] J2[2,2]; J4[4,5] 2 - J5 J1

10 J5[2,2]; J3[3,1] J2[2,2]; J4[4,5] 2 - J5 J5

11 J2[2,2]; J3[3,1]; J5[5,1] J4[4,5] 2 - J2 J2

12 J2[2,1]; J3[3,1]; J5[5,1] J4[4,5] Ω - - J2

13 J3[3,1]; J5[5,1] J4[4,5] Ω - - J3

14 J4[4,5]; J5[5,1] - 1 - J4 J4

16 J4[4,3]; J5[5,1] - 1 J4 J4 J4

18 J4[4,1]; J5[5,1] - Ω - - J4

19 J5[5,1] - - - J5

20 - - - - -

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Basic Priority-Ceiling Protocol

•  If resource access in a system of preemptable, fixed priority jobs
on one processor is controlled by the priority-ceiling protocol:
–  Deadlock can never occur
–  A job can be blocked for at most the duration of one critical section

•  There is no transitive blocking under the priority-ceiling protocol

•  Differences between the priority-inheritance and priority-ceiling
protocols:
–  Priority inheritance is greedy, while priority ceiling is not

•  The priority ceiling protocol may withhold access to a free resource, causing a
job to be blocked by a lower-priority job which does not hold the requested
resource – termed avoidance blocking

–  The priority ceiling protocol forces a fixed order onto resource accesses,
thus eliminating deadlock

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Defined resources, explaining timing anomalies and the need for
resource access control

•  Illustrated operation of three resource access control protocols:
–  Non-preemptable critical section
–  Basic priority inheritance protocol
–  Basic priority ceiling protocol

Tomorrow: more resource access protocols; practical aspects

