
Real-Time on General Purpose
Systems

Real-Time and Embedded Systems (M)
Lecture 12

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Real-time on general purpose systems
•  Need for flexible applications
•  Implementation strategies
•  Scheduling

Material corresponds to parts of chapters 10 and 12 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Real-Time on General Purpose Systems

•  Many real-time systems built using a general purpose operating
system, not an RTOS
–  Internet telephony; streaming audio and video; set-top boxes running Linux
–  DVD player software

•  Operating system may provide limited real-time support, but not
engineered for robust real-time operation, with many sources of
unpredictability
–  Virtual memory and/or disk activity
–  Limited timer resolution
–  Limited scheduler granularity

•  Need to engineer applications around these constraints
–  Consider how to make your application flexible

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Flexible Computation

•  Some real-time applications must tolerate fluctuation in available
resources or workload
–  A real-time network server may receive more traffic than expected
–  A failure may divert load onto a backup system
–  Real-time performance may degrade due to load from non-real-time tasks

sharing the processor

•  A real-time system has two degrees of flexibility when it becomes
impossible to meet all deadlines
–  Graceful degradation in timeliness
–  Graceful degradation in quality

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Flexible Computation: Timeliness

•  A task has an (l, L) deadline if at least l ≥ 0 jobs among any
consecutive set L ≥ l must complete before their deadline
–  The parameter L is the failure window of the task; clearly a spectrum of

requirements
–  A hard real-time task has (1, 1) deadlines
–  A soft real-time task has (0, L) deadlines

•  Depending on the application, systems may degrade by relaxing
their deadlines, allowing some tasks to complete late
–  Not generally desirable, but suitable for applications with fixed resource

demands and flexible timing requirements
•  Example: a DVD player running on a general purpose operating system might

pause if the system is overloaded, rather than dropping frames
–  Often requires statistical analysis of performance, to estimate probability of

missing deadline

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  Some applications can trade-off, at run time, quality of results for
the amount of time and resources used to produce those results

•  As a system moves into overload,
it gracefully degrades rather than
suddenly failing

•  Assumption: a timely result of poor
quality is better than a high quality,
but late, result

•  Examples:
–  A telephony application might prefer a brief glitch in output, rather than a

pause that leaves the other party wondering what’s happening
–  An air traffic control system should deliver a timely collision warning with

estimated location, rather than an exact warning, delivered too late

Flexible Computation: Quality

Load

A
cc

ur
ac

y

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing Flexible Computation

•  Jobs are divided into an optional part and a mandatory part
–  With sufficient resources, both mandatory and optional parts complete;

a precise result
–  With limited resources, the optional component is discarded, giving an

imprecise result

•  Assumption: possible to subdivide a job, produce meaningful
approximate answers

•  How to implement?
–  Sieve method
–  Milestone method
–  Multiple version method

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Sieve Method

•  A flexible task has a mixture of mandatory and optional jobs
•  When overloaded, some optional jobs discarded

–  If they were optional, why include them in the system?
–  Useful for applications which periodically refresh state

•  Example: video compression
–  Predicted frames can be discarded on overload

Time

Intermediate (predicted) frames Full frame

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  The system regularly checkpoints the result of the optional job as
a set of milestones; when deadline reached, job terminates and
latest milestone retrieved

•  A monotone is a job with optional component that can be stopped
any time; quality of result always increases with longer execution
–  Iterative numerical computation
–  Iterative statistical computation
–  Layered video encoding

•  Longer execution of a non-monotonic job
may not improve results
–  E.g. approximation algorithms that don’t always

converge

Time

A
cc

ur
ac

y

Milestone Method

Time

A
cc

ur
ac

y

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  The flexible job can be implemented as multiple versions:
–  Primary is high quality, but has a larger execution time and resource usage
–  Alternates are lower quality, but execute quicker or use fewer resources

•  […or provide fault tolerance]

•  The scheduler must make an a priori decision on which version to
execute, based on load at the start of the job
–  Requires more intelligence in the scheduler than sieve or milestone methods

•  Little gain from having more than one alternate

Multiple Versions

Primary

Alternate 1

Alternate 2

Scheduling
Decision

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing Flexible Computation

•  Which is best?
–  Sieve method
–  Milestone method
–  Multiple version method

•  It depends… sieve and multiple versions easiest to implement,
milestones likely gives best results

•  But: highly application dependent – what is the problem domain?
What algorithm?

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Workload Model

•  To schedule flexible computations, need a workload model
•  Definitions:

–  As usual a task, T, is comprised of a series of jobs Ji

–  Each flexible job, Ji, is logically decomposed into a chain of two jobs, Mi
and Oi which are the mandatory and optional components

–  The release times and deadlines of Mi and Oi are the same as Ji but Oi is
dependent on Mi

–  Execution time e = em + eo

•  A generalisation of the model used previously:
–  non-flexible jobs scheduled as-if eo is zero

J=(2,5] M=(2,5] O=(2,5]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Workload Model

•  Jobs are scheduled so mandatory tasks meet their deadline:
–  A schedule for a flexible application is valid if Ji is allocated processor time

at least equal to em and at most equal to e
–  The schedule is feasible if each job is allocated at least em units of processor

time before its deadline
–  Exactly the same definitions we saw in lecture 2 for non-flexible tasks,

adapted to allow for eo

•  Optional components of each job execute if there is time before
the deadline
–  An optional job completes it if receives eo before the deadline
–  An optional job shouldn’t execute beyond its deadline

•  May be terminated, and revert to the last milestone
•  May be pre-empted, and continue to execute at low priority if killing the job

would leave the system inconsistent

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Optional part
executes to

meet deadline

Later task
takes longer
to execute

Dependent Jobs

•  Assumption : the execution time of a job is independent of the
previous jobs

•  In some systems, saving time in an early job – by skipping its
optional component – makes a later job in the task take longer
–  Often occurs if errors are cumulative: eventually need to run the full

computation periodically, to bring the error back to an acceptable level

•  Need to take this into account when building the schedule, by
modelling both branches of the task graph

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Jobs with 0/1 Constraints

•  If the sieve or alternate methods used, no point running part of an
optional component
–  The optional component has a 0/1 constraint; either runs to completion, or

not at all

–  For optional jobs according to the sieve method:
•  When the optional jobs becomes eligible to run, make a choice to run the job

based on available execution time

–  For optional jobs according to the alternate method:
•  Model the alternates as mandatory and optional parts
•  Let em be execution time of the alternate, eo be the difference in execution time

between primary and alternate
•  After scheduling the mandatory part for em, the optional part is scheduled. If eo

available before its deadline, this corresponds to the primary version being
scheduled. Otherwise, only the alternate can be scheduled

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Er
ro

r

Processor
time

concave
linear

convex

em e

Optional component
runs to reduce error

Criteria of Optimality

•  Correctness: find a feasible schedule that ensures all mandatory
jobs complete

•  Quality of result: fit in as many optional jobs as possible, reduce
error in the result
–  Measure the error according to some domain specific metric
–  Clearly desirable if the error function is convex; may influence choice of

algorithm

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Criteria of Optimality

Try to reduce the error in the result… which error:
•  The sum of the total errors for all jobs?
•  The maximum error for an individual job?
•  The average error for all jobs?

Heavily application/domain dependent… no general guidelines

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Flexible Applications

•  How to schedule flexible applications?
•  Two approaches:

–  On-line
–  Off-line scheduling and/or heuristics

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Off-line Scheduling

•  Given a set of mandatory and optional tasks, an off-line algorithm
aims to derive a static schedule that minimises some particular error
metric
–  Can be executed during design, with hard coded schedule
–  Can be executed at run-time, as a result of a significant mode change that

causes more tasks to run

•  Generally reduces to linear programming/constraint optimisation
problem

•  Exponential time complexity, unrealistic for typical error functions
–  0/1 constraints
–  non-linear error functions

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

On-line Heuristic Scheduling

•  All useful scheduling algorithms for flexible applications use
heuristics or are otherwise imprecise

•  Two general approaches: mandatory first and slack stealing
–  Mandatory first algorithms schedule the mandatory parts of the system with

higher priority than the optional parts
•  Use a fixed priority algorithm, like rate monotonic, to schedule mandatory parts
•  Then schedule optional parts to minimise error:

–  dynamic least-attained-time suitable if error functions are convex, since diminishing
returns for tasks that have attained most time

–  dynamic best-incremental-return suitable if knowledge of error functions, since run
the task which will most reduce the error

•  If don’t know error functions (common case):
–  Rate monotonic or earliest deadline schedule of optional parts
–  Earliest deadline always achieves zero average error, if possible

–  Slack stealing run optional tasks in slack time of mandatory tasks,
dynamically according to EDF

–  Both seek to schedule mandatory parts as normal, fit in optional parts

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Flexible applications useful if system can be overloaded
•  Typically only useful on soft real time systems, generally running

on a general purpose operating system
–  Otherwise, engineer the system to avoid overload
–  Implication: don’t have good scheduling support

•  Given knowledge of current time/deadline, application decides to shed work
–  sieve, incremental with milestones, alternate algorithm

•  Very much heuristic driven, rather than explicitly scheduled
•  Inherently imprecise, and difficult to reason about

•  If you’re building these systems:
–  program defensively
–  measure behaviour
–  adapt accordingly, based on domain specific heuristics and error functions

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Outlined approaches to scheduling flexible jobs on general-
purpose systems
–  Design and implementations techniques
–  Workload model
–  Scheduling
–  Criteria of optimality

Next: tutorial on scheduler implementations; problem set 3

