
Implementing Task Schedulers (1)

Real-Time and Embedded Systems (M)
Lecture 10

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Implementing priority scheduling:
–  Tasks, threads and queues
–  Building a priority scheduler
–  Fixed priority scheduling (RM and DM)
–  Dynamic priority scheduling (EDF and LST)
–  Sporadic and aperiodic tasks

•  Outline of priority scheduling standards:
–  POSIX 1003.1b (a.k.a. POSIX.4)
–  POSIX 1003.1c (a.k.a. pthreads)
–  Implementation details

•  Use of priority scheduling standards:
–  Rate monotonic and deadline monotonic scheduling
–  User level servers to support aperiodic and sporadic tasks

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Tasks and Threads

•  A system comprises a set of tasks (or jobs)
•  Tasks are typed, and timed with parameters (φ, p, e, D)

•  A thread is the basic unit of work handled by the scheduler
–  Threads are the instantiation of tasks that have been admitted to the system
–  Acceptance test performed before admitting new tasks

[All equally applicable to processes, rather than threads]

Task Type

Phase, φ
Period, p

Number of Instances

Event List

Relative Deadline, D

Task Parameters
Sporadic or aperiodic

Periodic

Server

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Periodic Threads

•  Real time tasks defined
to execute periodically

•  Two implementation strategies:
–  Thread instantiated by system each period, runs a single instance of the task

•  A periodic thread ⇒ supported by some RTOS
•  Clean abstraction: a function that runs periodically; system handles timing
•  High overhead due to repeated thread instantiation

–  Thread instantiated once, repeatedly performs task, sleeps until next period
•  Lower overhead, but relies on the programmer to handle timing

Sporadic or aperiodic

Periodic

Server

Number of cycles a
periodic thread can
execute before it
terminates

Task Type

Phase, φ
Period, p

Number of Instances

Event List

Relative Deadline, D

Task Parameters

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Sporadic and Aperiodic Threads

•  Event list to trigger sporadic and aperiodic tasks
–  May be external (hardware) interrupts
–  May be signalled by another task

•  Each instance of a sporadic or aperiodic task may be instantiated
by the system as a sporadic or aperiodic thread
–  Not well supported for user-level tasks, often used in the kernel
–  Requires scheduler assistance

•  Alternatively, may be implemented using a server task

Sporadic or aperiodic

Periodic

Server

Task Type

Phase, φ
Period, p

Number of Instances

Event List

Relative Deadline, D

Task Parameters

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Server Threads

•  A server thread is a periodic thread that implements either:
–  a background server (simple, widely implemented)
–  a bandwidth preserving server (useful, but hard to implement)

•  Used to implement sporadic and aperiodic threads, if not directly
supported by the scheduler

Sporadic or aperiodic

Periodic

Server

Task Type

Phase, φ
Period, p

Number of Instances

Event List

Relative Deadline, D

Task Parameters

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Thread States and Transitions

 Sleeping ⇒ Periodic thread queued between cycles
 Ready ⇒ Queued at some priority, waiting to run
 Executing ⇒ Running on a processor
 Blocked ⇒ Queued waiting for a resource

 Transitions happen according to scheduling policy, resource
access, external events

Sleeping

Ready

Executing

Blocked

Thread created Thread destroyed

Resource availability

End of cycle

Start of cycle

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Mapping States onto Queues

Sleeping

Ready

Executing

Blocked

Sleeping Ready Blocked Executing

Abstract states…

…realised as
a set of queues

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Queuing in a Priority Scheduler

•  Scheduling algorithms implemented by varying the number of queues, queue
selection policy and service discipline
–  How to decide which queue holds a newly released thread?
–  How are the queues ordered?
–  From which queue is the next job to execute taken?

•  Different solutions for:
–  Fixed priority scheduling
–  Dynamic priority/deadline scheduling
–  Sporadic and server tasks

Sleeping Ready Blocked Executing

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Fixed Priority Scheduling

•  Provide a number of ready queues
•  Each queue represents a priority level

–  Tasks inserted into queues according to priority
–  Queues serviced in FIFO or round-robin order

•  RR tasks have a budget that depletes with each clock interrupt, then yield and go to back
of queue; FIFO tasks run until sleep, block or yield

•  Always run task at the head of the highest priority queue that has ready tasks
•  Can be used to implement rate monotonic, deadline monotonic scheduling

Sleeping Ready Blocked Executing

…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Ready

Fixed Priority Scheduling: Rate Monotonic

•  Assign fixed priorities to tasks based on their period, p
–  short period ⇒ higher priority

•  Implementation:
–  Task resides in sleep queue until released at phase, φ
–  When released, task inserted into a FIFO ready queue
–  One ready queue for each distinct priority
–  Always run task at the head of the highest priority queue that has ready

tasks

…

Blocked Executing Sleeping

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Blocking on Multiple Events

•  Typically there are several reasons why tasks may block
–  Disk I/O
–  Network
–  Inter-process communication
–  etc.

•  Usually want multiple blocked queues, for different reasons
–  Reduces overheads searching a long queue to wakeup thread

•  This is a typical priority scheduler provided by most RTOS

Ready

…

Blocked Executing Sleeping

…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Dynamic Priority Scheduling

•  Thread priority can change during execution
•  Implies that threads move between ready queues

–  Search through the ready queues to find the thread changing it’s priority
–  Remove from the ready queue
–  Calculate new priority
–  Insert at end of new ready queue

•  Expensive operation:
–  O(N) where N is the number of tasks
–  Suitable for system reconfiguration or priority inheritance when the rate of

change of priorities is slow
–  Naïve implementation of EDF or LST scheduling inefficient, since require

frequent priority changes
•  Too computationally expensive
•  Alternative implementation strategies possible…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Earliest Deadline First Scheduling

•  To directly support EDF scheduling:
–  When each thread is created, it’s relative deadline is specified
–  When a thread is released, it’s absolute deadline is calculated from it’s

relative deadline and release time

•  Could maintain a single ready queue:
–  Conceptually simple, threads ordered by absolute deadline
–  Inefficient if many active threads, since scheduling decision involves

walking the queue of N tasks

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Ready

…

Blocked Executing Sleeping

…

ED
F

Q
ue

ue

Earliest Deadline First Scheduling

•  Maintain a ready queue for each relative deadline
–  Tasks enter these queues in order of release
–  Ωʹ′ < N queues

•  Maintain a queue, sorted by absolute deadline, pointing to tasks at the head of
each ready queue
–  Updated each time a task completes
–  Updated when a task added to an empty ready queue
–  Always execute the task at the head of this queue
–  More efficient, since only perform a linear scan through active tasks

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Sporadic Tasks

•  Recall: sporadic tasks have hard deadlines but unpredictable
arrival times

•  Straight-forward to schedule using EDF:
–  Add to separate queue of ready sporadic tasks on release
–  Perform acceptance test
–  If accepted, insert into the EDF queue according to deadline

•  Difficult if using fixed priority scheduling:
–  Need a bandwidth preserving server

Ready Blocked Executing Sleeping

…

ED
F

Q
ue

ue

Acceptance test Sporadic

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Aperiodic Tasks

•  Trivial to implement in as a background server, using a single
lowest priority queue
–  All the problems described in lecture 7:

•  Excessive delay of aperiodic jobs
•  Potential for priority inversion if the aperiodic jobs use resources
•  [Linux has exactly this issue with idle-jobs]

–  Better to use a bandwidth preserving server

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Bandwidth Preserving Servers

•  Server scheduled as a periodic task, with some priority
•  When ready and selected to execute, given scheduling quantum

equal to the current budget
–  Runs until pre-empted or blocked; or
–  Runs until the quantum expires, sleeps until replenished

•  At each scheduling event in the system
–  Update budget consumption considering:

•  time for which the BP server has executed
•  time for which other tasks have executed
•  algorithm depends on BP server type

–  Replenish budget if necessary
–  Keep remaining budget in the thread control block
–  Fairly complex calculations, e.g. for sporadic server

•  Not widely supported… typically have to use background server

Unlike RR scheduling
which yields when a
quantum expires

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Standards for Real-Time Scheduling

•  There are two widely implemented standards
for real-time scheduling
–  POSIX 1003.1b (a.k.a. POSIX.4)
–  POSIX 1003.1c (a.k.a. pthreads)

•  Support a sub-set of scheduler features we
have discussed
–  A least-common denominator interface, design

to this and the system will be easily portable

•  Most RTOS also implement a non-portable “native” interface,
with more features, higher performance

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>

struct sched_param {
 int sched_priority;
 …

}

int sched_setscheduler(pid_t pid, int policy,
 struct sched_param *sp);

int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_yield(void);
#endif

POSIX 1003.1b Real-Time Scheduling API

Key features:
•  Get/set scheduling policy
•  Get/set parameters
•  Yield the processor

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX 1003.1b Real-Time Scheduling API

•  POSIX 1003.1b provides three scheduling policies::
–  SCHED_FIFO: Fixed priority, pre-emptive, FIFO scheduler
–  SCHED_RR: Fixed priority, pre-emptive, round robin scheduler

•  Use sched_rr_get_interval(pid_t pid, struct timespec *t)to find
the scheduling time quantum

–  SCHED_OTHER: Unspecified (often the default time-sharing scheduler)

•  Implementations can support alternative schedulers
•  Scheduling parameters are defined in struct sched_param

–  Currently just priority; other parameters can be added in future
–  Not all parameters applicable to all schedulers

•  E.g. SCHED_OTHER doesn’t use priority

•  A process can sched_yield() or otherwise block at any time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX APIs: Priority

•  POSIX 1003.1b provides (largely) fixed priority scheduling
–  Priority can be changed using sched_set_param(), but this is high

overhead and is intended for reconfiguration rather than for dynamic
scheduling

–  No direct support for dynamic priority algorithms (e.g. EDF)

•  Limited set of priorities:
–  Use sched_get_priority_min(), sched_get_priority_max() to

determine the range
–  Guarantees at least 32 priority levels

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Mapping onto Priority Queues

•  Tasks using SCHED_FIFO and SCHED_RR map onto a set of priority
queues as described previously
–  Relatively small change to existing time-sharing scheduler

•  Additional queues support SCHED_OTHER if providing a time
sharing service
–  Time sharing tasks only progress if no active real-time task
–  Beware: a rogue real-time task can lock out time sharing tasks

Sleeping

Ready Blocked Executing

…

…

…

Sleeping

Real-time

Time sharing

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

POSIX 1003.1c Real-Time Scheduling API

#include <unistd.h>
#ifdef _POSIX_THREADS
#include <pthread.h>
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);
int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_create(pthread_t *thread,
 pthread_attr_t *attr,
 void *(*thread_func)(void*),
 void *thread_arg);
int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);

Check for presence of pthreads

Pointer to function that
runs as the thread, and
it's argument

Returns thread ID

Same scheduling policies and
parameters as POSIX 1003.1b

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Detecting POSIX Support

•  If you need to write portable code, e.g. to run on Unix/Linux systems, you can check the
presence of POSIX 1003.1b via pre-processor defines:

#include <stdio.h>
#include <unistd.h>

#ifdef _POSIX_PRIORITY_SCHEDULING
 printf("POSIX 1003.1b\n");

#endif
#ifdef _POSIX_THREADS
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
 printf("POSIC 1003.1c\n");

#endif
#endif

•  Access to POSIX real-time extensions is usually privileged on general purpose systems
(e.g. suid root on Unix)

–  Remember to drop privileges!

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Using POSIX Scheduling: Rate Monotonic

•  Rate monotonic and deadline monotonic schedules can naturally
be implemented using POSIX primitives
1.  Assign priorities to tasks in the usual way for RM/DM
2.  Query the range of allowed system priorities

sched_get_priority_min()
sched_get_priority_max()

3.  Map task set onto system priorities
•  Care needs to be taken if there are large numbers of tasks, since some systems

only support a few priority levels
4.  Start tasks using assigned priorities and SCHED_FIFO

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implication: non-distinct priorities

Some tasks will be delayed relative to the
“correct” schedule

A set of tasks TE(i) is mapped to the
same priority queue as task Ti
This may delay Ti up to

Schedulable utilization of system will be
reduced

•  When building a rate monotonic system, ensure there are as many
ready queues as priority levels

•  May be limited by the operating system is present, and need
priority levels than there are queues provided

Using POSIX Scheduling: Rate Monotonic

T1

T2

T3

T4

T5

T6

∑
∈)(iTT

k
Ek

e

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 Uniform mapping

Q = | Ωn / Ωs |
tasks map onto each
system priority level

Constant Ratio mapping
k = (πi-1+1)/πi

tasks where k is a constant map to
each system priority with weight, πi

π1 = 1

π2 = 4

π3 = 10

1
2
3
4
5
6
7
8
9

Constant ratio mapping better preserves execution times of high
priority jobs

Using POSIX Scheduling: Rate Monotonic

•  How to map a set of tasks needing Ωn priorities onto a set of Ωs
priority levels, where Ωs < Ωn?

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Using POSIX Scheduling: EDF

•  EDF scheduling is not supported by POSIX
•  Conceptually would be simple to add:

–  A new scheduling policy
–  A new parameter to specify the relative deadline of each task

•  But, requires the kernel to implement deadline scheduling
–  POSIX grew out of the Unix community
–  Unlike priority scheduling, difficult to retro-fit deadline scheduling onto a

Unix kernel…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Periodic Tasks

•  Much of the previous discussion has assumed periodic tasks
scheduled by the operating systems

•  However, direct support for periodic tasks is rare
–  RT-Mach
–  Not one of the standard real-time POSIX extensions

•  Implement instead using a looping task:

 …set repeating wake up timer
 while (1) {
 …suspend until timer expires
 …do something
 }

•  Beware drift, due to inaccurate timers

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Aperiodic and Sporadic Tasks

•  Difficult to implement aperiodic and sporadic tasks using POSIX
interface since:
–  No support for EDF scheduling
–  No support for bandwidth preserving server

•  Can use background server thread at the lowest priority:
–  One thread with a queue of functions to execute

•  Work added to the queue by other threads
–  One thread per event, blocked on the event
–  Take care about priority inversion when accessing resources

•  Bandwidth preserving server cannot easily be simulated:
–  Need to measure execution time of the server, but:

•  Inaccurate
•  Often lacking resolution
•  Implies: may underestimate BP server run-time, and overuse resources

–  No way of knowing which other tasks have run, needed for the sporadic
server algorithm

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary of POSIX Scheduling

•  Good support for fixed priority scheduling
–  Rate and deadline monotonic
–  Background server can be used for aperiodic tasks

•  No support for earliest deadline scheduling, sporadic tasks
–  Some specialised RTOS support these
–  Earliest deadline scheduling more widely used to schedule network packets

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Implementing priority scheduling:
–  Tasks, threads and queues
–  Building a priority scheduler
–  Fixed priority scheduling (RM and DM)
–  Dynamic priority scheduling (EDF and LST)
–  Sporadic and aperiodic tasks

•  Outline of priority scheduling standards:
–  POSIX 1003.1b (a.k.a. POSIX.4)
–  POSIX 1003.1c (a.k.a. pthreads)
–  Implementation details

•  Use of priority scheduling standards:
–  Rate monotonic and deadline monotonic scheduling
–  User level servers to support aperiodic and sporadic tasks

