
Priority Driven Scheduling of 
Aperiodic and Sporadic Tasks (2) 

Real-Time and Embedded Systems (M) 
Lecture 8 
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Lecture Outline 

•  Scheduling aperiodic jobs (cont’d) 
–  Sporadic servers 
–  Constant utilization servers 
–  Total bandwidth servers 
–  Weighted fair queuing servers 

•  Scheduling sporadic jobs 
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Review: Scheduling Aperiodic Tasks 

•  Lecture 7 introduced the scheduling problem for aperiodic jobs: 
–  Aim to complete each aperiodic jobs as soon as possible, without causing 

periodic tasks or accepted sporadic jobs to miss deadlines 

•  Simple approaches to scheduling aperiodic jobs not sufficient: 
–  Background server is correct, but unduly delays aperiodic jobs 
–  Interrupt driven server is (typically) not correct 

•  Two more complex approaches offer better performance: 
–  Slack stealing 
–  Periodic server; defined by budget consumption and replenishment rules 

•  Outlined operation of various periodic servers: 
–  Polling server 

•  Simple, provably correct, provides a guaranteed fraction of the processor for 
scheduling aperiodic jobs, but sometimes gives poor response time 

–  Bandwidth preserving deferrable server 
•  Improves on the response time of the polling server, maintains its advantages 
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Limitations of Deferrable Servers 

•  Limitation of deferrable servers – they may delay lower-priority 
tasks for more time than a periodic task with the same period and 
execution time: 

0 1 2 3 4 5 6 7 8 9 

T2=(p=6.5, e=0.5) 

T1=(φ=2, p=3.5, e=1.5) 

TDS=(p=3, e=1) 

0 

1 
Budget 

JA released 

Budget replenished 

Budget exhausted 

Budget replenished 

•  The sporadic server is designed to eliminate this limitation. 
–  A different type of bandwidth preserving server 
–  More complex consumption and replenishment rules ensure that a sporadic 

server with period pS and budget eS never demands more processor time 
than a periodic task with the same parameters 

T1 blocked for 1.2 units 
although execution time 
of the deferrable server 
is only 1.0 units (with  
period 3 units) 
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A Simple Fixed-Priority Sporadic Server 

•  Consider a system T of N independent preemptable periodic tasks, 
plus a single sporadic server task with parameters (ps, es) 
–  Tasks are scheduled using a fixed-priority algorithm; system is known to be 

schedulable if it’s assumed that (ps, es) behaves as a standard periodic task 

•  Definitions: 
–  TH is the subset of periodic tasks with higher priorities than the server 

•  That subset may be idle when no job in TH is ready for execution, or busy 
–  Define tr as the last time the server budget replenished  
–  Define tf as the first instant after tr at which the server begins to execute 
–  At any time t define: 

•  BEGIN as the start of the earliest busy interval in the most recent contiguous 
sequence of busy intervals of TH starting before t 

–  Busy intervals are contiguous if the later one starts immediately the earlier one ends 
•  END as the end of the latest busy interval in this sequence, if this interval ends 

before t; define END = ∞ if the interval ends after t 
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A Simple Fixed-Priority Sporadic Server 

•  Consumption rule: 
–  At any time t after tr, if the server has budget and if either of the following 

two conditions is true, the server’s budget is consumed at the rate of 1 per 
unit time: 

C1: The server is executing 
C2: The server has executed since tr and END < t 

–  When they are not true, the server holds its budget 

•  That is: 
–  The server executes for no more time than it has execution budget 
–  The server retains its budget if: 

•  A higher-priority job is executing, or 
•  It has not executed since tr 

–  Otherwise, the budget decreases when the server executes, or if it idles 
while it has budget 
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A Simple Fixed-Priority Sporadic Server 

•  Replenishment rules 
R1:  When system begins executing, and each time budget is replenished, set 

 the budget to eS and tr = the current time. 
R2:  When server begins to execute (defined as time tf)  

 if END = tf then  
  te = max(tr, BEGIN) 
 else if END < tf then  
  te = tf 
 The next replenishment time is set to te + pS. 

R3:  The next replenishment occurs at the next replenishment time (= te + pS),  
 except under the following conditions: 

 (a) If te + pS is earlier than tf the budget is replenished as soon as it is exhausted 
 (b) If T becomes idle before te + pS, and becomes busy again at tb, the budget is  
      replenished at min(tb, te + pS) 

te = the effective replenishment time 
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Example: Fixed-Priority Sporadic Server 

TSS 

T1 

T2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

T3 

T1=(3, 0.5), T2=(4, 1.0), T3=(19, 4.5), Tss=(5, 1.5) 
Rate monotonic schedule; simple sporadic server 

A1: r = 3, e = 1 

A2: r = 7, e = 2 

A3: r = 15.5, e = 2 

A1 A2 A3 

Max. blocking time due 
to sporadic server = 1.5 
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Example: Fixed-Priority Sporadic Server 

TSS 

T1 

T2 

0.0 

1.0 

Budget 

0.5 

1.5 

No aperiodic jobs 
server suspended 

Job A1 released, 
server blocked 

Job A1 executes 

Budget continues to be used 
according to rule C2 

Job A2 released 
but no budget 

Budget available 
but blocked 

Job A2 executes 
No budget 

Sporadic server is constrained to 
execute for at most 1.5 units out 
of every 5, due to consumption 
and replenishment rules 

A1 A2 A3 
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A Simple Fixed-Priority Sporadic Server 

•  A sporadic server is more complex than a polling server or a 
deferrable server 
–  Consumption and replenishment rules require keeping track of a lot of data, 

several cases to consider when making scheduling decisions 

•  This complexity is acceptable, because schedulability of a 
sporadic server is much easier to demonstrate 

•  Theorem: for the purpose of validating schedulability, you can 
treat a simple sporadic server (ps, es) in a fixed-priority system 
exactly the same as any other task Ti with pi=ps and ei=es 
–  The actual inter-release times of the sporadic server will sometimes be 

greater than ps, and their execution times less than es, but this does not 
affect correctness 
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Other Fixed-Priority Sporadic Servers 

•  It is possible to replenish the budget of a sporadic server more 
aggressively, and to preserve it for longer, than does a simple 
sporadic server 

•  Further improves response time of aperiodic jobs, at the price of 
more complex consumption and replenishment rules, and higher 
scheduling overhead 

•  Examples: 
–  A sporadic/background server which claims all background time, in 

addition to the time claimed by the periodic component of the server 
–  A cumulative replenishment server which keeps any remaining budget at 

the end of each period for use in following periods 
–  … 

 Unclear if the complexity of these variants is worthwhile… 
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A Simple Dynamic-Priority Sporadic Server 

•  It is possible to define a simple sporadic server to operate in a 
dynamic-priority environment 
–  E.g. when using EDF or LST scheduling 

•  Consumption and replenishment rules are conceptually similar to 
those for a fixed-priority scheduler, with minor modifications that 
account for the difference in scheduling algorithm 
–  [See book for details] 

•  Provides same schedulability guarantees as the simple sporadic 
server for fixed-priority schedulers 
–  A simple sporadic server (ps, es) in an EDF or LST system can be treated 

exactly the same as any other task Ti with pi=ps and ei=es when performing 
schedulability analysis 
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Other Bandwidth Preserving Servers 

•  Now consider three other bandwidth preserving server algorithms: 
–  Constant utilization server 
–  Total bandwidth server 
–  Weighted fair queuing server 

•  All are approximations to an ideal generalised processor sharing 
algorithm 
–  Aim is to assign a portion of the available processor time to a task, making 

it believe it was executing on a slower processor, independent of any other 
tasks 

–  Aiming to provide fair sharing, timing isolation, or guaranteed throughput 
–  Widely used in network scheduling, but can also be used to schedule 

servers for aperiodic jobs 
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Constant Utilization Server 

•  A constant utilization server reserves a known fraction, ũs, of the 
processor time for execution of the server  

•  Like other bandwidth preserving servers, it has a budget and is 
defined in terms of consumption and replenishment rules 

•  When the budget is non-zero, the server is scheduled with other 
tasks on an EDF basis 
–  The budget and deadline of the server are chosen such that the utilization of 

the server is constant when it executes, and that it is always given enough 
budget to complete the job at the head of its queue each time its budget is 
replenished 

–  The server never has any budget if it has no work to do 
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Constant Utilization Server 

•  Consumption rule:  
–  A constant utilization server only consumes budget when it executes 

•  Replenishment rules: 
–  Initially, budget es = 0 and deadline d = 0 
–  When an aperiodic job with execution time e arrives at time t to an empty 

aperiodic job queue 
•  If t < d, do nothing (⇒ server is busy; wait for it to become idle) 

•  If t ≥ d then set d = t + e/ũs and es = e 
–  At the deadline d of the server 

•  If the server is backlogged, set d = d + e/ũs and es = e    (⇒ was busy when job arrived) 
•  If the server is idle, do nothing 

 i.e. the server is always given enough budget to complete the job 
at the head of its queue, with known utilization, when the budget 
is replenished 
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Total Bandwidth Server 

•  A constant utilization server gives a known fraction of processor 
capacity to a task; but cannot claim unused capacity to complete 
the task earlier 

•  A total bandwidth server improves responsiveness by allowing a 
server to claim background time not used by the periodic tasks 
–  Change the replenishment rules slightly, leave all else the same: 

•  Initially, es = 0 and d = 0 
•  When an aperiodic job with execution time e arrives at time t to an empty 

aperiodic job queue 
–  Set d = max(d, t) + e/ũs and es = e 

•  When the server completes the current aperiodic job, the job is removed from 
the queue and 

–  If the server is backlogged, set d = d + e/ũs and es = e 
–  If the server is idle, do nothing 

–  Always ready for execution when backlogged 

•  Will assign at least fraction ũs of the processor to a task 
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Weighted Fair Queuing Server 

•  Aim of the constant utilization and total bandwidth servers is to 
assign some fraction of processor capacity to a task 

•  When assigning capacity there is the issue of fairness: 
–  A scheduling algorithm is fair within any particular time interval if the 

fraction of processor time in the interval attained by each backlogged server 
is proportional to the server size 

•  Not only do all tasks meet their deadline, but they all make continual progress 
according to their share of the processor, no starvation 

–  Constant utilization and total bandwidth servers are fair on the long term, 
but can diverge significantly from fair shares in the short term 

•  Total bandwidth server partly by design, since it uses background time, but also 
has fairness issues when there is no spare background time 

•  As we discuss in lecture 17, the weighted fair queuing algorithm 
can also be used to share processor time between servers, and is 
designed to ensure fairness in allocations 
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Scheduling Sporadic Jobs 

•  Have focussed considerable effort on improving response time of 
aperiodic jobs 

•  Now turn to the problem of scheduling sporadic jobs alongside a 
system of periodic tasks and aperiodic jobs 

•  Recall the sporadic job scheduling problem: 
–  Based on the execution time and deadline of each newly arrived sporadic 

job, decide whether to accept or reject the job 
–  Accepting the job implies that the job will complete within its deadline, 

without causing any periodic task or previously accepted sporadic job to 
miss its deadline 

–  Do not accept a sporadic job if cannot guarantee it will meet its deadline 
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Model for Scheduling Sporadic Jobs 

•  When sporadic jobs arrive, they are both accepted and scheduled 
in EDF order 
–  In a dynamic-priority system, this is the natural order of execution 
–  In a fixed-priority system, the sporadic jobs are executed by a bandwidth 

preserving server, which performs an acceptance test and runs the sporadic 
jobs in EDF order 

–  In both cases, no new scheduling algorithm is required 

•  Definitions: 
–  Sporadic jobs are denoted by Si(ri, di, ei) where ri is the release time, di is 

the (absolute) deadline, and ei is the maximum execution time 
–  The density of a sporadic job Δi = ei/(di - ri) 

•  The total density of a system of n jobs is Δ = Δ1 + Δ2 + … + Δn 
–  The job is active during its feasible interval (ri, di] 
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Sporadic Jobs in Dynamic-Priority Systems 

•  Theorem: A system of independent preemptable sporadic jobs is 
schedulable according to the EDF algorithm if the total density of 
all active jobs in the system ≤ 1 at all times 
–  This is the standard schedulability test for EDF systems, but including both 

periodic and sporadic jobs 
–  This test uses the density since deadlines may not equal periods; hence it is 

a sufficient test, but not a necessary test 

•  What does this mean? 
–  If we can bound the frequency with which sporadic jobs appear to the 

running system, we can guarantee that none are missed 
–  Alternatively, when a sporadic job arrives, if we deduce that the total 

density would exceed 1 in its feasible interval, we reject the sporadic  
job (admission control) 
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Admission Control for Sporadic Jobs/EDF 

•  At time t there are n active sporadic jobs in the system 
•  The EDF scheduler maintains a list of the jobs, in non-decreasing 

order of deadline 
–  The deadlines partition the time from t to ∞ into n + 1 discrete intervals:  

I1, I2, …, In+1 
•  I1 begins at t and ends at the earliest sporadic job deadline 
•  For each 1 ≤ k ≤ n, each interval Ik+1 begins when the interval Ik ends, and ends 

at the next deadline in the list (or ∞ for In+1) 
–  The scheduler maintains the total density Δs,k of each interval Ik 

•  Let Il be the interval containing the deadline d of the new sporadic 
job S(t, d, e) 
–  The scheduler accepts the job if 

for all k=1, 2, …, l 
–  i.e. accept if the new sporadic job can be added, without increasing the 

density of any intervals past 1 
€ 

e
d − t

+ Δ s,k ≤1−Δ
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Admission Control for Sporadic Jobs/EDF 

•  Notes: 
–  This acceptance test is not optimal: a sporadic job may be rejected even 

though it could be scheduled 
•  The result for the schedulable utilization is based on the density and hence is 

sufficient but not necessary 
•  It is possible to derive a – much more complex – expression for schedulability 

which takes into account slack time, and is optimal. Unclear if the complexity is 
worthwhile. 

–  This acceptance test assumes every sporadic jobs is ready for execution 
when released 

•  If this is not the case, must modify the acceptance test to take into account the 
time when the jobs become ready, rather than their release time, when testing 
the intervals to see if their density exceeds 1 
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Sporadic Jobs in Fixed-Priority Systems 

•  One way to schedule sporadic jobs in a fixed-priority system is to 
use a sporadic server to execute them 

•  Because the server (ps, es) has es units of processor time every ps 
units of time, the scheduler can compute the least amount of time 
available to every sporadic job in the system 
–  Assume that sporadic jobs ordered among themselves in EDF 
–  When first sporadic job S1(t, ds,1, es,1) arrives, there is at least  
⎣(ds,1 - t)/ps⎦⋅es units of processor time available to the server 
before the deadline of the job 

–  Therefore it accepts S1 if the slack of the job 

€ 

σ s,1(t) = (ds,1 − t) / ps$ %es − es,1 ≥ 0

[cont’d] 

Time available 

Execution time 
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Sporadic Jobs in Fixed-Priority Systems 

–  To decide if a new job Si(t, ds,i, es,i) is acceptable when there are n sporadic 
jobs in the system, the scheduler first computes the slack σs,i(t) of Si: 

 where ξs,k is the execution time of the completed part of the existing job Sk 
The job cannot be accepted if σs,i(t) < 0 

–  If σs,i(t) ≥ 0, the scheduler then checks if any existing sporadic job Sk with 
deadline after ds,i may be adversely affected by the acceptance of Si 

•  This is done by checking if the slack σs,k(t) for each Sk at the time is at least 
equal to the execution time es,i  of Si 

•  i.e. the job Si is accepted if σs,k(t) - es,i ≥ 0 for every existing sporadic job Sk with 
deadline not less than ds,i 

•  The acceptance test for fixed-priority systems is more complex 
than that for dynamic-priority systems, but is still of reasonable 
time complexity to be implemented “on-line” 

€ 

σ s,i(t) = (ds,i − t) / ps$ %es − es,i − (es,k −ξ s,k )
ds ,k <ds ,i

∑
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Summary 

•  Have discussed further: 
–  Scheduling aperiodic jobs (cont’d) 

•  Sporadic servers 
•  Constant utilization servers 
•  Total bandwidth servers 
•  Weighted fair queuing servers 

–  Scheduling sporadic jobs 

•  Tutorial on Tuesday will recap the material from lectures 7 and 8 
 

•  Problem set 3 now available: due at 5pm on 10th February 


