
Priority Driven Scheduling of
Aperiodic and Sporadic Tasks (1)

Real-Time and Embedded Systems (M)
Lecture 7

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Assumptions, definitions and system model
•  Simple approaches

–  Background, interrupt-driven and polled execution
–  Periodic servers

•  Bandwidth-preserving servers
–  Deferrable server
–  Sporadic server
–  …

 The material in lectures 7 & 8 corresponds to (most of) chapter 7
of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Assumptions

•  One processor system; independent preemptable periodic tasks
scheduling using a priority-driven algorithm
–  Parameters of all periodic tasks are known
–  In the absence of aperiodic and sporadic jobs, periodic tasks meet deadlines

•  Aperiodic and/or sporadic jobs exist
–  They are independent of each other, and of the periodic tasks
–  They can be preempted at any time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

System Model

Processor
Aperiodic jobs

Periodic jobs

Sporadic jobs
Acceptance

Test

Rejection Accepted jobs placed on priority queues;
each type of job queued separately with
known queuing discipline

Scheduler selects
from jobs at head
of priority queues

Sc
he

du
le

r

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

The Scheduling Problem

•  Based on the execution time and deadline of each newly arrived
sporadic job, decide whether to accept or reject the job
–  Accepting the job implies that the job will complete within its deadline,

without causing any periodic task or previously accepted sporadic job to
miss its deadline

–  Do not accept a sporadic job if cannot guarantee it will meet its deadline

•  Aim to complete each aperiodic job as soon as possible, without
causing periodic tasks or accepted sporadic jobs to miss deadlines
–  Aperiodic jobs are always accepted

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Definitions: Correctness

•  A correct schedule is one where all periodic tasks, and any
sporadic tasks that have been accepted, meet their deadlines

•  A scheduling algorithm supporting aperiodic and/or sporadic jobs
is a correct algorithm if it only produces correct schedules for the
system

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Definitions: Optimality

•  An aperiodic job scheduling algorithm is optimal if it minimizes
either:
–  The response time of the job at the head of the aperiodic job queue
–  The average response time of all aperiodic jobs for a given queuing

discipline

•  A sporadic job scheduling algorithm is optimal if it accepts a new
sporadic job, and schedules that job to complete by its deadline, if
and only if the new job can be correctly scheduled to complete in
time
–  An optimal algorithm always produces a feasible schedule if it accepts a job
–  Note: that this is different from the definition of optimal on-line algorithms

discussed previously, as that definition required that all offered sporadic
jobs had to be accepted and completed in time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Aperiodic Jobs

•  Consider the simple case: scheduling aperiodic jobs along with a
system of periodic jobs
–  Ignore sporadic jobs for now

•  Two simple approaches:
–  Execute the aperiodic jobs in the background
–  Execute the aperiodic jobs by interrupting the periodic jobs

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Background Scheduling of Aperiodic Jobs

•  Aperiodic jobs are scheduled and executed only at times when
there are no periodic or sporadic jobs ready for execution

•  Advantages
–  Clearly produces correct schedules
–  Extremely simple to implement

•  Disadvantages
–  Not optimal since it is almost guaranteed to delay execution of aperiodic

jobs in favour of periodic and sporadic jobs, giving unduly long response
times for the aperiodic jobs

T1 = (3, 1)

T2 = (10, 4)

A : ra= 0.1

Response time = 7.7

RM schedule
of T1 and T2

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Interrupt Scheduling of Aperiodic Jobs

•  How can we improve the response time for aperiodic jobs?
•  Whenever an aperiodic job arrives, the execution of periodic tasks

is interrupted, and the aperiodic job is executed.
•  Advantages

–  Reduces response times of aperiodic jobs

•  Disadvantages
–  The algorithm is likely not correct, and will often cause periodic/sporadic

tasks in the system to miss some deadlines

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Slack Stealing for Aperiodic Jobs

•  Neither background or interrupt driven execution ideal
•  A better alternative is slack stealing

–  Periodic jobs are be scheduled to complete before their deadline; there may
be some slack time between completion of the periodic job and its deadline

–  Since we know the execution time of periodic jobs, can move the slack time
earlier in the schedule, running periodic jobs ‘just in time’ to meet their
deadlines

–  Execute aperiodic jobs in the slack time, ahead of periodic jobs

•  Reduces response time for aperiodic jobs and is correct, but more
complex and difficult to reason about

•  Outlined operation for clock-driven systems in lecture 4; the book
covers slack stealing in priority-driven systems
–  Conceptually simple, but computing available slack is difficult in practice

for priority-driven systems

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Polled Execution for Aperiodic Jobs

•  Another common way to schedule aperiodic jobs is using a polling
server
–  A periodic job (ps, es) scheduled according to the usual periodic algorithm

as the highest priority job
–  When executed, it examines the aperiodic job queue

•  If an aperiodic job is in the queue, it is executed for up to es time units
•  If the aperiodic queue is empty, the polling server self-suspends, giving up its

execution slot
•  The server does not wake-up once it has self-suspended, aperiodic jobs which

become active during a period are not considered for execution until the next
period begins

•  Simple to prove correctness, performance less than ideal – since
execute aperiodic jobs in particular timeslots – can we improve?
–  Yes, this is but the simplest periodic-server for aperiodic jobs

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Periodic Servers

•  A task that behaves much like a periodic task, but is created for
the purpose of executing aperiodic jobs, is a periodic server
–  A periodic server, TPS = (pPS, ePS) never executes for more than ePS units of

time in any time interval of length pPS
•  The parameter ePS is called the execution budget (or simply budget) of the

periodic server
•  When a server is scheduled and executes aperiodic jobs, it consumes its budget

at the rate of 1 per unit time; the budget has been exhausted when it reaches 0
•  A time instant when the budget is replenished is called a replenishment time

•  A periodic server is backlogged whenever the aperiodic job queue
is nonempty; it is idle if the queue is empty

•  The periodic server is scheduled as any other periodic task based
upon the priority scheme used by the scheduling algorithm
–  Except: the server is eligible for execution only when scheduled and when it

is backlogged and has non-zero budget

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Periodic Servers

•  Different kinds of periodic server differ in how the budget is
consumed when idle, and when the budget is replenished

•  A polling server is a simple kind of periodic server
–  The budget is replenished to es at the beginning of each period
–  The budget is immediately consumed if there is no work when the server is

scheduled

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Bandwidth-Preserving Servers

•  A deficiency of the polling server algorithm is that if the server is
scheduled when it is not backlogged, it loses its execution budget
until it is replenished when it is next released
–  An aperiodic job arriving just after the polling server has been scheduled

and found the aperiodic job queue empty will have to wait until the next
replenishment time

•  We would like to be able to preserve the execution budget of the
server when it finds an empty queue, such that it can execute an
aperiodic job that arrives later in the period, if doing so will not
affect the correctness of the schedule

•  Algorithms that improve the polling approach in this manner are
called bandwidth-preserving server algorithms

[Often used for scheduling network packets; hence the name]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Bandwidth-Preserving Servers

•  Bandwidth-preserving servers are periodic servers with additional
rules for consumption and replenishment of their budget

•  How do such servers work?
–  A backlogged bandwidth-preserving server is ready for execution when it

has budget
–  The scheduler keeps track of the consumption of the budget and suspends

the server when its is exhausted, or the server becomes idle
–  The scheduler moves the server back to the ready queue once it replenishes

its budget, if the server is backlogged at that time
–  If arrival of an aperiodic job causes the server to become backlogged, and it

has budget, the server is put back on the ready queue
•  This last rule overcomes limitation of polling server

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Bandwidth-Preserving Servers

•  Many types of bandwidth-preserving server:
–  Deferrable servers
–  Sporadic servers
–  Constant utilization servers
–  Total bandwidth servers
–  Weighted fair queuing servers
–  …

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server

•  The simplest bandwidth-preserving server
–  Improves response time of aperiodic jobs, compared to polling server

•  Consumption rule:
–  The budget is consumed at the rate of one per unit time whenever the server

executes
–  Unused budget is retained throughout the period, to be used whenever there

are aperiodic jobs to execute
•  Instead of discarding the budget if no aperiodic job to execute at start of period,

keep in the hope a job arrives

•  Replenishment rule:
–  The budget is set to eS at multiples of the period

•  i.e. time instants k⋅pS, for k = 0, 1, 2, …)
–  Note: the server is not allowed to carry over budget from period to period

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Example

Periodic tasks T1 and T2 are scheduled according to the rate-monotonic algorithm

0 1 2 3 4 5 6 7 8 9

T2=(p=6.5, e=0.5)

T1=(φ=2, p=3.5, e=1.5)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Example

Periodic tasks T1 and T2 are scheduled according to the rate-monotonic algorithm
TDS is a deferrable server executing aperiodic job JA with eA=1.7, rA=2.8

0 1 2 3 4 5 6 7 8 9

T2=(p=6.5, e=0.5)

T1=(φ=2, p=3.5, e=1.5)

TDS=(p=3, e=1)

0

1
Budget

JA released

Budget replenished

Budget exhausted

Budget replenished

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Schedulability (1)

•  In general, to determine schedulability of a fixed-priority system
with a deferrable server, must find a critical instant and conduct
time-demand analysis as usual

•  Theorem: In a fixed-priority system T in which Di ≤ pi for all i,
with a deferrable server (pS, eS) with the highest priority among all
tasks, a critical instant of every periodic tasks Ti occurs at a time t0
when all of the following are true:
–  One of its jobs Ji,c is released at t0
–  A job in every higher-priority periodic task is released at t0
–  The budget of the server is eS at t0, one or more aperiodic jobs are released

at t0, and they keep the server backlogged hereafter
–  The next replenishment time of the server is t0 + eS

[Follows from the theorem about critical instants; lecture 6, slide 8]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Schedulability (1)

•  The definition of critical instant is identical to that for the periodic
tasks without the deferrable server + the worst-case requirements
for the server

•  Therefore, the expression for the time-demand function becomes:

–  To determine whether the task Ti is schedulable, we simply have to check
whether wi(t) ≤ t for some t ≤ Di.

–  Remember, this is a sufficient condition, not necessary – i.e. if this
condition is not true, the system may not be schedulable

€

wi(t) = ei +
t
pk

"

$

%
% ek +es + t - es

ps

"

$

%
%

k=1

i−1

∑ for 0 < t ≤ pi

Execution time
of job Ji

Execution time of higher priority
jobs started during this interval

Execution time of the
deferrable server

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Schedulability (1)

•  In general, no maximum schedulable utilization test to determine
schedulability for a fixed-priority system with a deferrable server

•  One special case:
–  A system of n independent, preemptable periodic tasks, whose periods

satisfy the inequalities ps < p1 < p2 < … < pn < 2ps and pn > ps + es,
where the relative deadlines are equal to their respective periods, can be
scheduled rate-monotonically with a deferrable server provided that the
utilization U < URM/DS(n) where:

€

URM/DS (n) = (n −1) us + 2
us +1

$
%

&

'
(

1
(n−1)

−1
)

*
+
+

,

-
.
.

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deferrable Server: Schedulability (2)

•  It is easier to reason about the schedulability of a deadline-driven
system with a deferrable server
–  The deadline of a deferrable server is its next replenishment time
–  A periodic task Ti in a system of N independent, preemptable, periodic tasks

is schedulable with a deferrable server with period pS, execution budget eS
and utilization uS, according to the EDF algorithm if:

€

ek
min(Dk, pk)k=1

N

∑ + us 1+
ps − es
Di

$

%
&

'

(
) ≤1

–  This must be calculated for each task in the system, since Di included
•  Example:

–  Tasks T1=(3, 0.6), T2=(5.0, 0.5), T3=(7, 14) scheduled with a deferrable
server ps=4, es=0.8

–  The left-hand side of the above inequality is 0.913, 0.828 and 0.792
respectively; hence the three tasks are schedulable

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Sporadic Servers

•  Limitation of deferrable servers – they may delay lower-priority
tasks for more time than a periodic task with the same period and
execution time

•  The sporadic server is designed to eliminate this limitation. Its
consumption and replenishment rules ensure that a sporadic server
with period pS and budget eS never demands more processor time
than a periodic task with the same parameters

[Details in lecture 8]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Assumptions, definitions and system model
•  Simple approaches

–  Background, interrupt-driven and polled execution
–  Periodic servers

•  Bandwidth-preserving servers
–  Deferrable server
–  Sporadic server
–  …

 Should have an initial understanding of how to schedule aperiodic
jobs in a more optimal manner

