Priority-driven Scheduling of
Periodic Tasks (2)

Real-Time and Embedded Systems (M)
Lecture 6




rsity of Glasgow

Copyright © 2005 Unive

Lecture Outline

» Fixed-priority scheduling
— Optimality of RM and DM
— General schedulability tests and time demand analysis

Practical factors

— Non-preemptable regions

— Self-suspension
— Context switches
— Limited priority levels

[Continues from material in lecture 5, with the same assumptions]



rsity of Glasgow

Copyright © 2005 Unive

Optimality of RM and DM Algorithms

 In the general case RM and DM algorithms are not optimal
— Some systems cannot be scheduled (Uyg,, < 1)
— Complex expressions for maximum schedulable utilization discussed in last
lecture
« However, RM and DM are optimal in simply periodic systems
— A system of periodic tasks is simply periodic if the period of each task is an
integer multiple of the period of the other tasks:
Pr = nP;
where p; < p, and n 1s a positive integer; for all 7, and 7,

— This 1s true for many real-world systems, e.g. the helicopter flight control
system discussed in lecture 1



rsity of Glasgow

Copyright © 2005 Unive

Optimality of RM and DM Algorithms

e Theorem: A system of simply periodic, independent, preemptable
tasks with D. > p. 1s schedulable on one processor using the RM
algorithm if and only if U< 1

— Corollary: The same 1s true for the DM algorithm
— [Proof in the book]

» By accepting limitations on task periods, we can make stronger
statements about schedulability

— This 1s often true... the more restricted a system, the easier it is to reason
about



rsity of Glasgow

Copyright © 2005 Unive

Schedulability of Fixed-Priority Tasks

* We have identified several simple schedulability tests for fixed-
priority scheduling:
— A system of n independent preemptable periodic tasks with D, = p. can be
feasibly scheduled on one processor using RM if and only if U <n-(2'"—1)

— A system of simply periodic independent preemptable tasks with D, > p. 1s
schedulable on one processor using the RM algorithm if and only if U < 1

— [similar results for DM]

* But: there are algorithms and regions of operation where we don’ t
have a schedulability test and must resort to exhaustive simulation

— Is there a more general schedulability test? Yes, but not as simple as those
we’ ve seen so far...



rsity of Glasgow

Copyright © 2005 Unive

Schedulability Test for Fixed-Priority Tasks

» Fixed priority algorithms are predictable and do not suffer from
scheduling anomalies
— The worst case execution time of the system occurs with the worst case
execution time of the jobs

— Unlike dynamic priority algorithms, which can exhibit anomalous behaviour
[See also lecture 3]

« Use this as the basis for a general schedulability test:

— Find the critical instant when the system 1s most loaded, and has its worst
response time

— Use time demand analysis to determine if the system is schedulable at that
instant

— Prove that, if a fixed-priority system is schedulable at the critical instant, it is
always schedulable



rsity of Glasgow

Copyright © 2005 Unive

Finding the Critical Instant

» A critical instant for a job 1s the worst-case release time for that
job, taking into account all jobs that have higher priority than it

— 1.e. a job released at the same instant as all jobs with higher priority are
released, and must wait for all those jobs to complete before it executes

— The response time of a job in 7 released at a critical instant 1s called the
maximum (possible) response time, and 1s denoted by W,

» The schedulability test involves checking each task 1n turn, to
verify that it can be scheduled when started at a critical instant

— If schedulable at all critical instants, will work at other times

— More work than the test for maximum schedulable utilization, but less than
an exhaustive simulation



Copyright © 2005 University of Glasgow

Finding the Critical Instant

A critical instant of a task 7 1s a time instant such that:
If w;, <D,, for every J;, in T, then

All jobs meet deadlines,
The job released at that instant has the but this instant is when
- - . - the job with the slowest
maximum response time of all jobs in 7; ;
response 1s started
and W; = w,,

elseif dJ;, : wy > D;, then
The job released at that instant has response ¢ iobs don’ t mest

time > D deadlines, this is one of

where w;, , is the response time those jobs

* Theorem: In a fixed-priority system where every job completes
before the next job in the same task 1s released, a critical instant
occurs when one of its jobs J, . 1s released at the same time with
a job from every higher-priority task.

— Intuitively obvious, but proved in the book



rsity of Glasgow

Copyright © 2005 Unive

Finding the Critical Instant: Example

T,= (2.0, 0.6)

[

T,=(2.5, 0.2)2 H . H

=nes

miaialnieiutel
[T
I

T,=(3.0,12) i

3 tasks scheduled using rate-monotonic
* Response times of jobs in 7, are:
ry1=0.8,7,3,=03,r,;,=02,7,,=03,r,:;=08, ...

Therefore critical instances are t =0 and = 10



rsity of Glasgow

Copyright © 2005 Unive

Using the Critical Instant

* Having determined the critical instants, show that for each job J,

released at a critical instant, that job and all higher priority tasks
complete executing before their relative deadlines

» If so, the entire system be schedulable...

e That is: don’ t simulate the entire system, simply show that it has
correct characteristics following a critical instant

— This process is called time demand analysis



rsity of Glasgow

Copyright © 2005 Unive

Time-Demand Analysis

« Compute the total demand for processor time by a job released at a
critical instant of a task, and by all the higher-priority tasks, as a
function of time from the critical instant

* Check if this demand can be met before the deadline of the job:
— Consider one task, T, at a time, starting highest priority and working down
to lowest priority

— Focus on a job, J, in T,, where the release time, #,, of that job is a critical
instant of 7,

— At time ¢, + ¢ for > 0, the processor time demand w(¢) for this job and all
higher-priority jobs released 1n [¢,, 7] 1s:

w(t) = the time-
demand function

k=1
EX?CUﬁOH time s Execution time of higher priority
of job J; jobs started during this interval

e, forO<t=p,




rsity of Glasgow

Copyright © 2005 Unive

Time-Demand Analysis

« Compare the time demand, w(¢), with the available time, #:
— Ifw(#) <t for some ¢ < D, the job, J,, meets its deadline, ¢, + D,

— If w(#) >t for all 0 <t < D, then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm

 Note that this 1s a sufficient condition, but not a necessary condition. Simulation
may show that the critical instant never occurs in practice,
so the system could be feasible...

« Use this method to check that all tasks are schedulable if released
at their critical instants; if so conclude the entire system can be
scheduled



Copyright © 2005 University of Glasgow

Time-Demand Analysis: Example

Rate Monotonic: T, =(3, 1), T, = (5, 2), T; = (10, 2)

Time Queue Execute
0 JialLls 35,0215 35,42 Jia
1 Dal2]5 35,4(2] Ty
3 Jipl1]5 J5,4(2] Jia
4 J3.02] I3
5 Jo02]5 35 4(1] Ja
6 JialL]s Jo o105 T3 4[] Jia
7 Jool1]5 J54(1] J2a
8 J3.01] I3
9 J4l1] Ji4
10 1241215 135[2] Jya
12 Jisl1]s J3502] Jis
13 J3,(2] J3s
15 Ji6l1]; J242] Jig

Remaining execution time

Time Queue Execute
16 J,412] 124
18 Jiql1] U
19
20 J252]; 13 5[2] Jos
21 | Jyg[105 1550175 J3502] Jis
22 Jo5[11; 15 5[2] Jos
23 J5502] 33
24 Jiol1]5 J55[1] Jio
25 J,6[21; 35511 Jos
27 J1 100175 T35[1] Ji10
28 J3’@\ 33
29

D),




Copyright © 2005 University of Glasgow

Time-Demand Analysis: Example

Rate Monotonic: T, =(3, 1), T, = (5, 2), T; = (10, 2)

ws(?)

J; 1 starts with a time

\ demand of 5 units: 2
10 for itself, 2 for J, , w,(?)
1 for J; ?
The time-demand functions l; 2 I Deadline for J;
w(?), w,(¢) and w;(7) are N
not above ¢ at their deadline §
=> system can be scheduled g 6
2
< :
§ Deadline for J, |
8 4 Wl(t)
O
£
=
2
Deadline for J |
> Time, ¢




rsity of Glasgow

Copyright © 2005 Unive

Time-Demand Analysis

* The time-demand function w(¢) 1s a staircase function

— Steps in the time-demand for a task occur at multiples of the period for
higher-priority tasks
— The value of w(¥) — ¢ linearly decreases from a step until the next step

 If our interest 1s the schedulability of a task, 1t suffices to check if
w{(?) < t at the time instants when a higher-priority job 1s released

e Our schedulability test becomes:
— Compute w(?)
— Check whether w(¢) <t is satisfied at any of the instants # =j-p,
where k=1,2,...,i

j=1,2, ..., |min(p, D,)/p,]



rsity of Glasgow

Copyright © 2005 Unive

Time-Demand Analysis: Summary

 Time-demand analysis schedulability test 1s more complex than
the schedulable utilization test, but more general

— Works for any fixed-priority scheduling algorithm, provided the tasks have
short response time (1.e. p;< D,)

— Can be extended to tasks with arbitrary deadlines (see book)

— Only a sufficient test: guarantees a “schedulable” results are correct, but
requires further testing to validate a result of “not schedulable”

» Alternative approach: simulate the behaviour of tasks released at
the critical instants, up to the largest period of the tasks

— Still involves simulation, but less complex than an exhaustive simulation of
the system behaviour

— Worst-case simulation method



rsity of Glasgow

Copyright © 2005 Unive

Practical Factors

 We have assumed that:
— Jobs are preemptable at any time
— Jobs never suspend themselves
— Each job has distinct priority
— The scheduler is event driven and acts immediately

« These assumptions are often not valid... how does this affect the
system?



Copyright © 2005 University of Glasgow

Blocking and Priority Inversion

» A ready job 1s blocked when it 1s prevented from executing by a
lower-priority job; a priority inversion 1s when a lower-priority
job executes while a higher-priority job 1s blocked

» These occur because some jobs that cannot be pre-empted:

— Many reasons why a job may have non-preemptable sections
* Critical section over a resource

« Some system calls are non-preemptable
* Disk scheduling

— If a job becomes non-preemptable, priority inversions may occur, these may
cause a higher priority task to miss its deadline

— When attempting to determine 1f a task meets all of i1ts deadlines, must
consider not only all the tasks that have higher priorities, but also non-
preemptable regions of lower-priority tasks

» Add the blocking time in when calculating if a task is schedulable



rsity of Glasgow

Copyright © 2005 Unive

Self-Suspension and Context Switches

» Self-suspension

— A job may invoke an external operation (e.g. request an I/O operation),
during which time it is suspended

— This means the task is no longer strictly periodic... again need to take into
account self-suspension time when calculating a schedule

e (Context Switches

— Assume maximum number of context switches K. for a job in T; 1s known;
each takes 7.¢ time units

— Compensate by setting execution time of each job, e, ..., = € T 2¢
(more if jobs self-suspend, since additional context switches)



rsity of Glasgow

Copyright © 2005 Unive

Tick Scheduling

« All of our previous discussion of priority-driven scheduling was
driven by job release and job completion events

e Alternatively, can perform priority-driven scheduling at periodic
events (timer interrupts) generated by a hardware clock

— 1.e. tick (or time-based) scheduling

« Additional factors to account for in schedulability analysis

— The fact that a job 1s ready to execute will not be noticed and acted upon
until the next clock interrupt; this will delay the completion of the job

— A ready job that is yet to be noticed by the scheduler must be held
somewhere other than the ready job queue, the pending job queue

— When the scheduler executes, it moves jobs in the pending queue to the
ready queue according to their priorities; once in ready queue, the jobs
execute in priority order



rsity of Glasgow

Copyright © 2005 Unive

Practical Factors

* C(lear that non-ideal behaviour can affect the schedulability of a
system

 Have touched on how — more details later in the module



rsity of Glasgow

Copyright © 2005 Unive

Summary

Have discussed fixed-priority scheduling of periodic tasks:
— Optimality of RM and DM
— More general schedulability tests and time-demand analysis

Outlined practical factors that affect real-world periodic systems

Tutorial on Tuesday will recap the material from lectures 5 and 6

Problem set 2 now available: due at Spm on 3rd February



