Priority-driven Scheduling of Periodic Tasks (1)

Real-Time and Embedded Systems (M)

Lecture 5

Lecture Outline

- Assumptions
- Fixed-priority algorithms
 - Rate monotonic
 - Deadline monotonic
- Dynamic-priority algorithms
 - Earliest deadline first
 - Least slack time
- Relative merits of fixed- and dynamic-priority scheduling
- Schedulable utilization and proof of schedulability

The material in lectures 5 & 6 corresponds to chapter 6 of Liu's book

Assumptions

- Focus on well-known priority-driven algorithms for scheduling periodic tasks on a single processor
- Assume a restricted periodic task model:
 - A fixed number of independent periodic tasks exist
 - Jobs comprising those tasks:
 - Are ready for execution as soon as they are released
 - Can be pre-empted at any time
 - Never suspend themselves
 - New tasks only admitted after an acceptance test; may be rejected
 - The period of a task defined as minimum inter-release time of jobs in task
 - There are no aperiodic or sporadic tasks
 - Scheduling decisions made immediately upon job release and completion
 - Algorithms are event driven, never intentionally leave a resource idle
 - Context switch overhead negligibly small; unlimited priority levels

Dynamic versus Static Systems

- Recall from lecture 3:
 - If jobs are scheduled on multiple processors, and a job can be dispatched to any of the processors, the system is *dynamic*
 - If jobs are partitioned into subsystems, each subsystem bound statically to a processor, we have a *static* system
 - Difficult to determine the best- and worst-case performance of dynamic systems, so most hard real-time systems built are static
- In static systems, the scheduler for each processor schedules the jobs in its subsystem independent of the schedulers for the other processors
- ⇒ Results demonstrated for priority-driven uniprocessor systems are applicable to each subsystem of a static multiprocessor system
 - They are *not* applicable to dynamic multiprocessor systems

Fixed- and Dynamic-Priority Algorithms

- A priority-driven scheduler is an on-line scheduler
 - It does *not* pre-compute a schedule of tasks/jobs: instead assigns priorities to jobs when released, places them on a run queue in priority order
 - When pre-emption is allowed, a scheduling decision is made whenever a job is released or completed
 - At each scheduling decision time, the scheduler updates the run queues and executes the job at the head of the queue
- Jobs in a task may be assigned the same priority (*task level fixed-priority*) or different priorities (*task level dynamic-priority*)
- The priority of each job is usually fixed (*job level fixed-priority*); but some systems can vary the priority of a job after it has started (*job level dynamic-priority*)
 - Job level dynamic-priority usually very inefficient

Fixed-Priority Scheduling: Rate-Monotonic

- Best known fixed-priority algorithm is rate-monotonic scheduling
- Assigns priorities to tasks based on their periods
 - The shorter the period, the higher the priority
 - The rate (of job releases) is the inverse of the period, so jobs with higher rate have higher priority
- Widely studied and used
- For example, consider a system of 3 tasks:

$$- T_1 = (4, 1) \Rightarrow \text{rate} = \frac{1}{4}$$

$$- T_2 = (5, 2) \Rightarrow \text{rate} = \frac{1}{5}$$

$$- T_3 = (20, 5)$$
 $\Rightarrow \text{rate} = \frac{1}{20}$

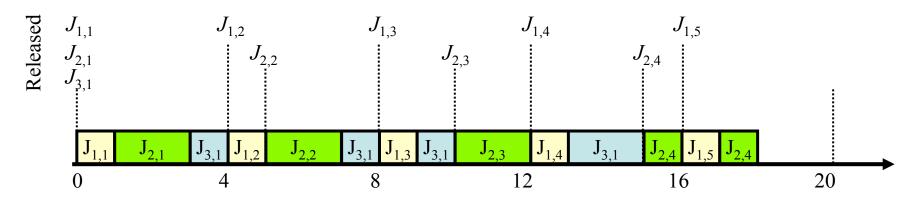
- Relative priorities: $T_1 > T_2 > T_3$

Example: Rate-Monotonic Scheduling

Time	Ready to run	Scheduled
0	$J_{2,1} - J_{3,1}$	${f J}_{1,1}$
1	$J_{3,1}$	\rightarrow $J_{2,1}$
2	$J_{3,1}$	$J_{2,1}$
3		\longrightarrow $J_{3,1}$
4	J _{3,1}	$J_{1,2}$
5	$J_{3,1}$	${f J}_{2,2}$
6	$J_{3,1}$	$J_{2,2}$
7		$J_{3,1}$
8	J _{3,1}	$J_{1,3}$
9		$J_{3,1}$

Time	Ready to run	Scheduled		
10	$J_{3,1}$	$J_{2,3}$		
11	$J_{3,1}$	$J_{2,3}$		
12	$J_{3,1}$	$J_{1,4}$		
13		J _{3,1}		
14		J _{3,1}		
15		$J_{2,4}$		
16	J _{2,4}	$J_{1,5}$		
17		$J_{2,4}$		
18				
19	Low priority task	(T)		

Low priority tasks (e.g. T₃) are frequently preempted



Fixed-Priority Scheduling: Deadline-Monotonic

- The *deadline-monotonic* algorithm assigns task priority according to relative deadlines the shorter the relative deadline, the higher the priority
- When relative deadline of every task matches its period, then ratemonotonic and deadline-monotonic give identical results
- When the relative deadlines are arbitrary:
 - Deadline-monotonic can sometimes produce a feasible schedule in cases where rate-monotonic cannot
 - But, rate-monotonic always fails when deadline-monotonic fails

⇒ Deadline-monotonic preferred to rate-monotonic

Dynamic-Priority Algorithms

- Earliest deadline first (EDF)
 - The job queue is ordered by earliest deadline
- Least slack time first (LST)
 - The job queue is ordered by least slack time
 - Two variations:
 - Strict LST scheduling decisions are made also whenever a queued job's slack time becomes smaller than the executing job's slack time *huge* overheads, not used
 - Non-strict LST scheduling decisions made only when jobs release or complete
- First in, first out (FIFO)
 - Job queue is first-in-first-out by release time
- Last in, first out (LIFO)
 - Job queue is last-in-first-out by release time

Relative Merits

- Fixed- and dynamic-priority scheduling algorithms have different properties; neither appropriate for all scenarios
- Algorithms that do not take into account the urgencies of jobs in priority assignment usually perform poorly
 - E.g FIFO, LIFO
- The EDF algorithm gives higher priority to jobs that have missed their deadlines than to jobs whose deadline is still in the future
 - Not necessarily suited to systems where occasional overload unavoidable
- Dynamic algorithms like EDF can produce feasible schedules in cases where RM and DM cannot
 - But fixed priority algorithms often more predictable

Example: Comparing Different Algorithms

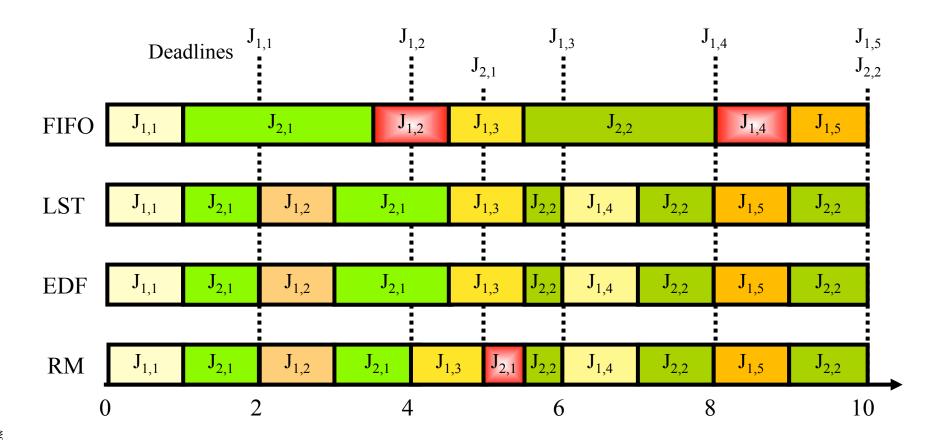
- Compare the performance of RM, EDF, LST and FIFO scheduling
- Assume a single processor system with 2 tasks:

$$- T_1 = (2, 1)$$

 $- T_2 = (5, 2.5)$ $H = 10$

- The total utilization is $1.0 \Rightarrow$ no slack time
 - Expect some of these algorithms to lead to missed deadlines!
 - This is one of the cases where EDF works better than RM/DM

Example: RM, EDF, LST and FIFO



• Demonstrate by exhaustive simulation that LST and EDF meet deadlines, but FIFO and RM don't

Schedulability Tests

- Simulating schedules is both tedious and error-prone... can we demonstrate correctness without working through the schedule?
- Yes, in some cases! This is a schedulability test
 - A test to demonstrate that all deadlines are met, when scheduled using a particular algorithm
 - An efficient schedulability test can be used as an on-line acceptance test;
 clearly exhaustive simulation is too expensive for this!

Schedulable Utilization

- Recall: a periodic task T_i is defined by the 4-tuple (ϕ_i, p_i, e_i, D_i) with utilization $u_i = e_i / p_i$
- Total utilization of the system $U = \sum_{i=1}^{n} u_i$ where $0 \le U \le 1$

- A scheduling algorithm can feasibly schedule any system of periodic tasks on a processor if U is equal to or less than the maximum schedulable utilization of the algorithm, U_{ALG}
 - If $U_{ALG} = 1$, the algorithm is optimal
- Why is knowing of U_{ALG} important? It gives a schedulability test, where a system can be validated by showing that $U \le U_{ALG}$

Schedulable Utilization: EDF

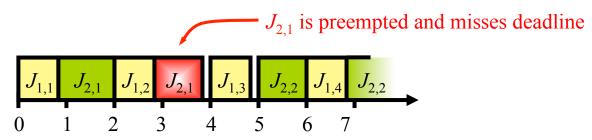
- Theorem: a system of independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using EDF if and only if $U \le 1$
 - $-U_{EDF} = 1$ for independent, preemptable periodic tasks with $D_i = p_i$ [Expected since EDF proved optimal in lecture 3 see the book for proof]
 - Corollary: result also holds if deadline longer than period: $U_{EDF} = 1$ for independent preemptable periodic tasks with $D_i \ge p_i$

• Notes:

- Result is independent of ϕ_i
- Result can also be shown to apply for LST

Schedulable Utilization: EDF

- What happens if $D_i < p_i$ for some i? The test doesn't work...
 - E.g. $T_1 = (2, 0.8), T_2 = (5, 2.3, 3)$



- However, there is an alternative test:
 - The density of the task, T_i , is $\delta_i = e_i / \min(D_i, p_i)$
 - The density of the system is $\Delta = \delta_1 + \delta_2 + ... + \delta_n$
 - Theorem: A system T of independent, preemptable periodic tasks can be feasibly scheduled on one processor using EDT if $\Delta \le 1$.

• Note:

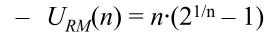
- This is a sufficient condition, but not a necessary condition – i.e. a system is guaranteed to be feasible if $\Delta \le 1$, but might still be feasible if $\Delta > 1$ (would have to run the exhaustive simulation to prove)

Schedulable Utilization: EDF

- How can you use this in practice?
 - Assume using EDF to schedule multiple periodic tasks, known execution time for all jobs
 - ⇒ Choose the periods for the tasks such that the schedulability test is met
- Example: a simple digital controller, as discussed in lecture 1
 - Control-law computation task, T_1 , takes $e_1 = 8$ ms, sampling rate is 100 Hz (i.e. $p_1 = 10$ ms)
 - $\Rightarrow u_1 \text{ is } 0.8$
 - ⇒ the system is guaranteed to be schedulable
 - Want to add a built-in self test task, T_2 , taking 50ms will the system still work?
 - $U = u_1 + u_2 \le 1.0$ where we know that $u_1 = 0.8$, $u_2 = 50$ ms / p_2
 - To be schedulable $\Rightarrow u_2 \le 0.2 \Rightarrow p_2 \ge 250 \text{ms}$
 - As long as the period for this task is 250 ms or more, the total utilization remains ≤ 1 and the system can be scheduled

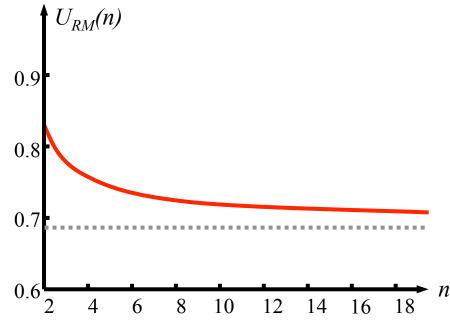
Schedulable Utilization of RM

• Theorem: a system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using RM if and only if $U \le n \cdot (2^{1/n} - 1)$



- For large $n \to \ln 2$ (i.e. $n \to 0.69314718056...$)

– [Proof in book - complicated!]



- $U \le U_{RM}(n)$ is a sufficient, but not necessary, condition – i.e. a feasible rate monotonic schedule is *guaranteed* to exist if $U \le U_{RM}(n)$, but *might* still be possible if $U > U_{RM}(n)$

Schedulable Utilization of RM

- What happens if the relative deadlines for tasks are not equal to their respective periods?
- Assume the deadline is some multiple v of the period: $D_k = v \cdot p_k$
- It can be shown that:

$$U_{RM}(n,v) = \begin{cases} v & 0 \le v \le 0.5 \\ n((2v)^{\frac{1}{n}} - 1) + 1 - v & \text{for } 0.5 \le v \le 1 \\ v(n-1) \left[\left(\frac{v+1}{v} \right)^{\frac{1}{n}-1} - 1 \right] & v = 2,3,... \end{cases}$$

Schedulable Utilization of RM

n	v = 4.0	v = 3.0	v = 2.0	v = 1.0	v = 0.9	v = 0.8	v = 0.7	v = 0.6	v = 0.5
2	0.944	0.928	0.898	0.828	0.783	0.729	0.666	0.590	0.500
3	0.926	0.906	0.868	0.779	0.749	0.708	0.656	0.588	0.500
4	0.917	0.894	0.853	0.756	0.733	0.698	0.651	0.586	0.500
5	0.912	0.888	0.844	0.743	0.723	0.692	0.648	0.585	0.500
6	0.909	0.884	0.838	0.734	0.717	0.688	0.646	0.585	0.500
7	0.906	0.881	0.834	0.728	0.713	0.686	0.644	0.584	0.500
8	0.905	0.878	0.831	0.724	0.709	0.684	0.643	0.584	0.500
9	0.903	0.876	0.829	0.720	0.707	0.682	0.642	0.584	0.500
∞	0.892	0.863	0.810	0.693	0.687	0.670	0.636	0.582	0.500

 $D_i = p_i$

 $D_i > p_i \Rightarrow$ Schedulable utilization increases

 $D_i \le p_i \Rightarrow$ Schedulable util ization decreases

Summary

Key points:

- Different priority scheduling algorithms
 - Earliest deadline first, least slack time, rate monotonic, deadline monotonic
 - Each has different properties, suited for different scenarios
- Scheduling tests, concept of maximum schedulable utilization
 - Examples for different algorithms

Tomorrow: practical factors, more schedulability tests...