
Priority-driven Scheduling of
Periodic Tasks (1)

Real-Time and Embedded Systems (M)
Lecture 5

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Assumptions
•  Fixed-priority algorithms

–  Rate monotonic
–  Deadline monotonic

•  Dynamic-priority algorithms
–  Earliest deadline first
–  Least slack time

•  Relative merits of fixed- and dynamic-priority scheduling
•  Schedulable utilization and proof of schedulability

The material in lectures 5 & 6 corresponds to chapter 6 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Assumptions

•  Focus on well-known priority-driven algorithms for scheduling
periodic tasks on a single processor

•  Assume a restricted periodic task model:
–  A fixed number of independent periodic tasks exist

•  Jobs comprising those tasks:
–  Are ready for execution as soon as they are released
–  Can be pre-empted at any time
–  Never suspend themselves

•  New tasks only admitted after an acceptance test; may be rejected
•  The period of a task defined as minimum inter-release time of jobs in task

–  There are no aperiodic or sporadic tasks
–  Scheduling decisions made immediately upon job release and completion

•  Algorithms are event driven, never intentionally leave a resource idle
–  Context switch overhead negligibly small; unlimited priority levels

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Dynamic versus Static Systems

•  Recall from lecture 3:
–  If jobs are scheduled on multiple processors, and a job can be dispatched to

any of the processors, the system is dynamic
–  If jobs are partitioned into subsystems, each subsystem bound statically to a

processor, we have a static system
–  Difficult to determine the best- and worst-case performance of dynamic

systems, so most hard real-time systems built are static

•  In static systems, the scheduler for each processor schedules the
jobs in its subsystem independent of the schedulers for the other
processors

⇒ Results demonstrated for priority-driven uniprocessor systems are
applicable to each subsystem of a static multiprocessor system
–  They are not applicable to dynamic multiprocessor systems

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Fixed- and Dynamic-Priority Algorithms

•  A priority-driven scheduler is an on-line scheduler
–  It does not pre-compute a schedule of tasks/jobs: instead assigns priorities

to jobs when released, places them on a run queue in priority order
–  When pre-emption is allowed, a scheduling decision is made whenever a

job is released or completed
–  At each scheduling decision time, the scheduler updates the run queues and

executes the job at the head of the queue

•  Jobs in a task may be assigned the same priority (task level fixed-
priority) or different priorities (task level dynamic-priority)

•  The priority of each job is usually fixed (job level fixed-priority);
but some systems can vary the priority of a job after it has started
(job level dynamic-priority)
–  Job level dynamic-priority usually very inefficient

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Fixed-Priority Scheduling: Rate-Monotonic

•  Best known fixed-priority algorithm is rate-monotonic scheduling
•  Assigns priorities to tasks based on their periods

–  The shorter the period, the higher the priority
–  The rate (of job releases) is the inverse of the period, so jobs with higher

rate have higher priority

•  Widely studied and used

•  For example, consider a system of 3 tasks:
–  T1 = (4, 1) ⇒ rate = 1/4
–  T2 = (5, 2) ⇒ rate = 1/5
–  T3 = (20, 5) ⇒ rate = 1/20
–  Relative priorities: T1 > T2 > T3

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Rate-Monotonic Scheduling

Time Ready to run Scheduled
0 J2,1 J3,1 J1,1

1 J3,1 J2,1

2 J3,1 J2,1

3 J3,1

4 J3,1 J1,2

5 J3,1 J2,2

6 J3,1 J2,2

7 J3,1

8 J3,1 J1,3

9 J3,1

Time Ready to run Scheduled
10 J3,1 J2,3

11 J3,1 J2,3

12 J3,1 J1,4

13 J3,1

14 J3,1

15 J2,4

16 J2,4 J1,5

17 J2,4

18
19

Low priority tasks (e.g. T3)
are frequently preempted

0 4 8 12 16 20
J1,5 J2,4 J1,1 J1,2 J1,3 J1,4 J2,4 J2,1 J3,1 J2,3 J2,2 J3,1 J3,1 J3,1

J1,1 J1,2 J1,3 J1,4 J1,5
J2,2 J2,1 J2,3 J2,4

J3,1 R
el

ea
se

d

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Fixed-Priority Scheduling: Deadline-Monotonic

•  The deadline-monotonic algorithm assigns task priority according
to relative deadlines – the shorter the relative deadline, the higher
the priority

•  When relative deadline of every task matches its period, then rate-
monotonic and deadline-monotonic give identical results

•  When the relative deadlines are arbitrary:
–  Deadline-monotonic can sometimes produce a feasible schedule in cases

where rate-monotonic cannot
–  But, rate-monotonic always fails when deadline-monotonic fails

⇒ Deadline-monotonic preferred to rate-monotonic

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Dynamic-Priority Algorithms

•  Earliest deadline first (EDF)
–  The job queue is ordered by earliest deadline

•  Least slack time first (LST)
–  The job queue is ordered by least slack time
–  Two variations:

•  Strict LST – scheduling decisions are made also whenever a queued job’s slack
time becomes smaller than the executing job’s slack time – huge overheads, not
used

•  Non-strict LST – scheduling decisions made only when jobs release or complete

•  First in, first out (FIFO)
–  Job queue is first-in-first-out by release time

•  Last in, first out (LIFO)
–  Job queue is last-in-first-out by release time

[For details, see lecture 3]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Relative Merits

•  Fixed- and dynamic-priority scheduling algorithms have different
properties; neither appropriate for all scenarios

•  Algorithms that do not take into account the urgencies of jobs in
priority assignment usually perform poorly
–  E.g FIFO, LIFO

•  The EDF algorithm gives higher priority to jobs that have missed
their deadlines than to jobs whose deadline is still in the future
–  Not necessarily suited to systems where occasional overload unavoidable

•  Dynamic algorithms like EDF can produce feasible schedules in
cases where RM and DM cannot
–  But fixed priority algorithms often more predictable

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Comparing Different Algorithms

•  Compare the performance of RM, EDF, LST and FIFO scheduling
•  Assume a single processor system with 2 tasks:

–  T1 = (2, 1)
–  T2 = (5, 2.5) H = 10

•  The total utilization is 1.0 ⇒ no slack time
–  Expect some of these algorithms to lead to missed deadlines!
–  This is one of the cases where EDF works better than RM/DM

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  Demonstrate by exhaustive simulation that LST and EDF meet
deadlines, but FIFO and RM don’t

Example: RM, EDF, LST and FIFO

0 2 4 6 8 10

J1,1 J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5 J2,2 J2,2

J2,1

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5 J2,2 J2,2

J2,1 J1,2 J2,1 J1,3 J2,2 J1,4 J1,5 J2,2 J2,2

J2,1

J1,2 J1,3 J2,2 J1,4 J1,5

RM

EDF

LST

FIFO

J1,1

J1,1

J1,1

J1,1 J1,2 J1,3 J1,4 J1,5
J2,1 J2,2

Deadlines

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulability Tests

•  Simulating schedules is both tedious and error-prone… can we
demonstrate correctness without working through the schedule?

•  Yes, in some cases! This is a schedulability test
–  A test to demonstrate that all deadlines are met, when scheduled using a

particular algorithm
–  An efficient schedulability test can be used as an on-line acceptance test;

clearly exhaustive simulation is too expensive for this!

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization

•  Recall: a periodic task Ti is defined by the 4-tuple (φi, pi, ei, Di)
with utilization ui = ei / pi

•  Total utilization of the system where 0 ≤ U ≤ 1

•  A scheduling algorithm can feasibly schedule any system of
periodic tasks on a processor if U is equal to or less than the
maximum schedulable utilization of the algorithm, UALG
–  If UALG = 1, the algorithm is optimal

•  Why is knowing of UALG important? It gives a schedulability test,
where a system can be validated by showing that U ≤ UALG

€

U = uii=1

n
∑

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization: EDF

•  Theorem: a system of independent preemptable periodic tasks
with Di = pi can be feasibly scheduled on one processor using EDF
if and only if U ≤ 1
–  UEDF = 1 for independent, preemptable periodic tasks with Di = pi

[Expected since EDF proved optimal
in lecture 3 – see the book for proof]

–  Corollary: result also holds if deadline longer than period: UEDF = 1 for
independent preemptable periodic tasks with Di ≥ pi

•  Notes:
–  Result is independent of φi

–  Result can also be shown to apply for LST

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization: EDF

•  What happens if Di < pi for some i? The test doesn’t work…
–  E.g. T1 = (2, 0.8), T2=(5, 2.3, 3)

•  However, there is an alternative test:
–  The density of the task, Ti, is δi = ei / min(Di, pi)
–  The density of the system is Δ = δ1 + δ2 + … + δn
–  Theorem: A system T of independent, preemptable periodic tasks can be

feasibly scheduled on one processor using EDT if Δ ≤ 1.

•  Note:
–  This is a sufficient condition, but not a necessary condition – i.e. a system is

guaranteed to be feasible if Δ ≤ 1, but might still be feasible if Δ > 1
(would have to run the exhaustive simulation to prove)

J2,2 J1,1 J1,2 J1,3 J1,4

0 1 2 3 4 5 6 7

J2,1 J2,1 J2,2

J2,1 is preempted and misses deadline

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization: EDF

•  How can you use this in practice?
–  Assume using EDF to schedule multiple periodic tasks, known execution

time for all jobs
⇒ Choose the periods for the tasks such that the schedulability test is met

•  Example: a simple digital controller, as discussed in lecture 1

–  Control-law computation task, T1, takes e1 = 8 ms, sampling rate is 100 Hz
(i.e. p1 = 10 ms)
⇒ u1 is 0.8
⇒ the system is guaranteed to be schedulable

–  Want to add a built-in self test task, T2, taking 50ms - will the system still
work?

•  U = u1 + u2 ≤ 1.0 where we know that u1 = 0.8, u2 = 50ms / p2
•  To be schedulable ⇒ u2 ≤ 0.2 ⇒ p2 ≥ 250ms
•  As long as the period for this task is 250 ms or more, the total utilization

remains ≤ 1 and the system can be scheduled

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization of RM

•  Theorem: a system of n independent preemptable periodic tasks
with Di = pi can be feasibly scheduled on one processor using RM
if and only if U ≤ n⋅(21/n – 1)

–  URM(n) = n⋅(21/n – 1)
–  For large n → ln 2

(i.e. n → 0.69314718056…)

–  [Proof in book - complicated!]

–  U ≤ URM(n) is a sufficient, but not necessary, condition – i.e. a feasible rate
monotonic schedule is guaranteed to exist if U ≤ URM(n), but might still be
possible if U > URM(n)

0.7

0.6

0.8

0.9

2 4 6 8 10 12 14 16 18
n

URM(n)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization of RM

•  What happens if the relative deadlines for tasks are not equal to
their respective periods?

•  Assume the deadline is some multiple υ of the period: Dk = υ⋅pk

•  It can be shown that:

€

URM (n,υ) =

υ

n((2υ)1
n −1) +1−υ

υ(n −1) υ +1
υ

$

%
&

'

(
)

1
n−1

−1
*

+
,
,

-

.
/
/

0

1

2
2
2 2

3

2
2
2
2

 for

0 ≤υ ≤ 0.5

0.5 ≤υ ≤1

υ = 2,3,...

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Schedulable Utilization of RM

n υ = 4.0 υ = 3.0 υ = 2.0 υ = 1.0 υ = 0.9 υ = 0.8 υ = 0.7 υ = 0.6 υ = 0.5

2 0.944 0.928 0.898 0.828 0.783 0.729 0.666 0.590 0.500

3 0.926 0.906 0.868 0.779 0.749 0.708 0.656 0.588 0.500

4 0.917 0.894 0.853 0.756 0.733 0.698 0.651 0.586 0.500

5 0.912 0.888 0.844 0.743 0.723 0.692 0.648 0.585 0.500

6 0.909 0.884 0.838 0.734 0.717 0.688 0.646 0.585 0.500

7 0.906 0.881 0.834 0.728 0.713 0.686 0.644 0.584 0.500

8 0.905 0.878 0.831 0.724 0.709 0.684 0.643 0.584 0.500

9 0.903 0.876 0.829 0.720 0.707 0.682 0.642 0.584 0.500

∞ 0.892 0.863 0.810 0.693 0.687 0.670 0.636 0.582 0.500

Di = pi

Di>pi ⇒ Schedulable
utilization increases

Di<pi ⇒ Schedulable
util ization decreases

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

Key points:
•  Different priority scheduling algorithms

–  Earliest deadline first, least slack time, rate monotonic, deadline monotonic
–  Each has different properties, suited for different scenarios

•  Scheduling tests, concept of maximum schedulable utilization
–  Examples for different algorithms

Tomorrow: practical factors, more schedulability tests…

