
Clock-Driven Scheduling

Real-Time and Embedded Systems (M)
Lecture 4

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Problem Set 1 Errata

•  Question 2 did not specify the execution time for the jobs. You
may assume that jobs execute for 1 time unit each, and that the
system has only a single processor.

•  Deadline extended to 5pm on 27th January, to allow you to revise
your answers to this question
–  If you’ve submitted an answer already, you may submit a revision provided

it is clearly identified as such

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Assumptions and notation for clock-driven scheduling
•  Static, clock-driven schedules and the cyclic executive
•  Handling aperiodic jobs

–  Slack stealing

•  Handling sporadic jobs
•  Advantages and disadvantages of clock driven scheduling

Material corresponds to chapter 5 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Assumptions

•  Clock-driven scheduling is applicable for deterministic systems
•  Accordingly, this lecture assumes a restricted periodic task model:

–  The parameters of all tasks are known a priori
–  For each mode of operation, system has a fixed number, n, periodic tasks

•  For task Ti each job Ji,k is ready for execution at its release time ri,k, and is
released pi units of time after the previous job in Ti such that ri,k = ri,k-1 + pi

•  Variations in the inter-release times of jobs in a periodic task are negligible
–  There may be aperiodic jobs released at unexpected times

•  Assume that the system maintains a single queue for aperiodic jobs
•  Addition of such jobs to the queue does not require attention of the scheduler
•  Whenever the processor is available for aperiodic jobs, the job at the head of

this queue is executed
–  There are no sporadic jobs

•  Recall that sporadic jobs have hard deadlines, aperiodic jobs do not
•  [We discuss the implication of relaxing this assumption later in the lecture]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Notation

•  The 4-tuple Ti = (φi, pi, ei, Di) refers to a periodic task Ti with
phase φi, period pi, execution time ei, and relative deadline Di
–  Default phase of Ti is φi = 0, default relative deadline is the period Di = pi
– 

Omit elements of the tuple that have default values
–  Examples:

 T1 = (1, 10, 3, 6) ⇒ φ1 = 1 p1 = 10 e1 = 3 D1 = 6

 T2 = (10, 3, 6) ⇒ φ2 = 0 p2 = 10 e2 = 3 D2 = 6

 T3 = (10, 3) ⇒ φ3 = 0 p3 = 10 e3 = 3 D3 = 10

J1,1 released at 1, deadline 7
J1,2 released at 11, deadline 17
…

J1,1 released at 0, deadline 6
J1,2 released at 10, deadline 16
…

J1,1 released at 0, deadline 10
J1,2 released at 10, deadline 20
…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Static, Clock-driven Cyclic Scheduler

•  Since the parameters of all jobs with hard deadlines are known a
priori, can construct a static cyclic schedule of the jobs off-line
–  The amount of processor time allocated to every job is equal to its

maximum execution time
–  The scheduler dispatches jobs according to the static schedule; as long as no

job ever overruns, all deadlines are met
–  The static schedule guarantees that each job completes by its deadline

•  Since the schedule is calculated off-line, we can employ complex,
sophisticated algorithms
–  In particular, we can choose a feasible schedule from all possible feasible

schedules that optimizes some characteristic of the system (e.g. the idle
periods for the processor are nearly periodic to accommodate aperiodic
jobs)

–  The book gives an example algorithm; since it’s an offline computation,
any suitable algorithm can be used

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Execution time

Period

Slack time, can be used
to execute aperiodic jobs.

Example Cyclic Schedule

•  Consider a system with 4 independent periodic tasks:
–  T1 = (4, 1.0)
–  T2 = (5, 1.8) [Phase and deadline take default values]
–  T3 = (20, 1.0)
–  T4 = (20, 2.0)

•  Hyper-period H = 20 (least common multiple of 4, 5, 20, 20)
•  Can construct an arbitrary static schedule to meet all deadlines:

4 0 8 12 16 20

T1 T1 T1 T1 T2 T2 T2 T4 T3 T1 T2 Execution times

Feasible intervals

T1

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing a Cyclic Scheduler

•  Store pre-computed schedule as a table
•  The system creates all the tasks that are to be

executed:
–  Allocates sufficient memory for the code and data

of every task
–  Brings the code executed by the task into memory

•  Scheduler sets the hardware timer to interrupt
at the first decision time, tk=0

•  On receipt of an interrupt at tk:
–  Scheduler sets the timer interrupt to expire at tk+1
–  If T(tk) = I and aperiodic job waiting, start aperiodic

job
–  Otherwise, start next job in task T(tk) executing

k tk T(tk)
0 0 T1

1 1 T3

2 2 T2

3 3.8 I

4 4 T1

5 5 I

6 6 T4

7 8 T2

8 9.8 T1

9 10.8 I

10 12 T2

11 13.8 T1

12 14.8 I

13 17 T1

14 17 I

15 18 T2

16 19.8 I

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementing a Cyclic Scheduler

Input: stored schedule (tk, T(tk)) for k = 0, 1, n – 1.
Task SCHEDULER:

 set the next decision point i = 0 and table entry k = 0;
 set the timer to expire at tk;
 do forever:
 accept timer interrupt;
 if an aperiodic job is executing, preempt the job;
 current task T = T(tk);
 increment i by 1;
 compute the next table entry k = i mod n;
 set the timer to expire at [i / n] * H + tk;
 if the current task T is I,
 let the job at the head of the aperiodic queue execute;
 else
 let the task T execute;
 sleep;
 end do.

End SCHEDULER.

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Structured Cyclic Schedules

•  Arbitrary table-driven cyclic schedules flexible, but inefficient
–  Relies on accurate timer interrupts, based on execution times of tasks
–  High scheduling overhead

•  Easier to implement if structure imposed:
–  Make scheduling decisions at periodic intervals (frames) of length f
–  Execute a fixed list of jobs with each frame, disallowing pre-emption except

at frame boundaries
–  Require phase of each periodic task to be a non-negative integer multiple of

the frame size
•  The first job of every task is released at the beginning of a frame
•  φ = k⋅f where k is a non-negative integer

•  Gives two benefits:
–  Scheduler can easily check for overruns and missed deadlines at the end of

each frame
–  Can use a periodic clock interrupt, rather than programmable timer

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Frame Size Constraints

•  How to choose frame length?
–  To avoid preemption, want jobs to start and complete execution within a

single frame:

 f ≥ max(e1, e2, …, en) (Eq.1)
–  To minimize the number of entries in the cyclic schedule, the hyper-period

should be an integer multiple of the frame size (⇒ f divides evenly into the
period of at least one task):

 ∃ i : mod(pi, f) = 0 (Eq.2)
–  To allow scheduler to check that jobs complete by their deadline, should be

at least one frame boundary between release time of a job and its deadline:

 2*f – gcd(pi, f) ≤ Di for i = 1, 2, …, n (Eq.3)
 (see book for derivation of Eq.3)

•  All 3 constraints should be satisfied

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  Review the system of independent periodic tasks from our earlier
example:

T1 = (4, 1.0) T2 = (5, 1.8)
T3 = (20, 1.0) T4 = (20, 2.0)

•  Constraints:
Eq.1 ⇒ f ≥ max(1, 1.8, 1, 2) ≥ 2
Eq.2 ⇒ f ∈ { 2, 4, 5, 10, 20 }
Eq.3 ⇒ 2f - gcd(4, f) ≤ 4 (T1)

 2f - gcd(5, f) ≤ 5 (T2)
 2f - gcd(20, f) ≤ 20 (T3, T4)

Frame Size Constraints – Example

Hyper-period H = lcm(4, 5, 20, 20) = 20

Only value that satisfies
all constraints is f = 2

4 0 8 12 16 20

T1 T1 T1 T1 T2 T2 T2 T4 T3 T1 T2 Execution times

Feasible intervals

T1

2 6 10 14 18

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Job Slices

•  Sometimes, a system cannot meet all three frame size constraints
simultaneously

•  Can often solve by partitioning a job with large execution time
into slices (sub-jobs) with shorter execution times/deadlines

–  Gives the effect of preempting the large job, so allow other jobs to run
–  Sometimes need to partition jobs into more slices than required by the

frame size constraints, to yield a feasible schedule

•  Example:
–  Consider a system with T1 = (4, 1), T2 = (5, 2, 7), T3 = (20, 5)
–  Cannot satisfy constraints: Eq.1 ⇒ f ≥ 5 but Eq.3 ⇒ f ≤ 4
–  Solve by splitting T3 into T3,1 = (20, 1), T3,2 = (20, 3) and T3,3 = (20,1)
–  Result can be scheduled with f = 4

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Building a Cyclic Schedule

•  To construct a cyclic schedule, we need to make three kinds of
design decisions:
–  Choose a frame size based on constraints
–  Partition jobs into slices
–  Place slices in frames

•  These decisions cannot be taken independently:
–  Ideally want as few slices as possible, but may be forced to use more to get

a feasible schedule

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Implementation: A Cyclic Executive

•  Modify previous table-driven cyclic scheduler to be frame based,
schedule all types of jobs in a multi-threaded system

•  Table that drives the scheduler has F entries, where F = H/f
–  Each corresponding entry L(k) lists the names of the job slices that are

scheduled to execute in frame k; called a scheduling block
–  Each job slice implemented by a procedure, to be called in turn

•  Cyclic executive executed by the clock interrupt that signals the
start of a frame:
–  Determines the appropriate scheduling block for this frame
–  Executes the jobs in the scheduling block in order
–  Starts job at head of the aperiodic job queue running for remainder of frame

•  Less overhead than pure table driven cyclic scheduler, since only
interrupted on frame boundaries, rather than on each job

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Aperiodic Jobs

•  Thus far, aperiodic jobs are scheduled in the background after all
jobs with hard deadlines scheduled in each frame have completed
–  Delays execution of aperiodic jobs in preference to periodic jobs
–  However, note that there is often no advantage to completing a hard real-

time job early, and since an aperiodic job is released due to an event, the
sooner such a job completes, the more responsive the system

•  Hence, minimizing response times for aperiodic jobs is typically a
design goal of real-time schedulers

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Aperiodic Jobs: Slack Stealing

•  Periodic jobs scheduled in frames that end before their deadline;
there may be some slack time in the frame after the periodic job
completes

•  Since we know the execution time of periodic jobs, can move the
slack time to the start of the frame, running the periodic jobs ‘just
in time’ to meet their deadline

•  Execute aperiodic jobs in the slack time, ahead of periodic jobs
–  The cyclic executive keeps track of the slack left in each frame as the

aperiodic jobs execute, preempts them to start the periodic jobs when there
is no more slack

–  As long as there is slack remaining in a frame, the cyclic executive returns
to examine the aperiodic job queue after each slice completes

•  Reduces response time for aperiodic jobs, but requires accurate
timers

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling Sporadic Jobs

•  We assumed there were no sporadic jobs – what if this is relaxed?
•  Sporadic jobs have hard deadlines, release and execution times

that are not known a priori
–  Hence, a clock-driven scheduler cannot guarantee a priori that sporadic jobs

complete in time

•  However, scheduler can determine if a sporadic job is schedulable
when it arrives
–  Perform an acceptance test to check whether the newly released sporadic

job can be feasibly scheduled with all the jobs in the system at that time
–  If there is sufficient slack time in the frames before the new job’s deadline,

the new sporadic job is accepted; otherwise, it is rejected
•  Can be determined that a new sporadic job cannot be handled as soon as that job

is released; earliest possible rejection
–  If more than one sporadic job arrives at once, they should be queued for

acceptance in EDF order

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Practical Considerations

•  Handling overruns:
–  Jobs are scheduled based on maximum execution time, but failures might

cause overrun
–  A robust system will handle this by either: 1) killing the job and starting an

error recovery task; or 2) preempting the job and scheduling the remainder
as an aperiodic job

•  Depends on usefulness of late results, dependencies between jobs, etc.

•  Mode changes:
–  A cyclic scheduler needs to know all parameters of real-time jobs a priori
–  Switching between modes of operation implies reconfiguring the scheduler

and bringing in the code/data for the new jobs
–  This can take a long time: schedule the reconfiguration job as an aperiodic

or sporadic task to ensure other deadlines met during mode change

•  Multiple processors:
–  Can be handled, but off-line scheduling table generation more complex

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Clock-driven Scheduling: Advantages

•  Conceptual simplicity
–  Ability to consider complex dependencies, communication delays, and

resource contention among jobs when constructing the static schedule,
guaranteeing absence of deadlocks and unpredictable delays

–  Entire schedule is captured in a static table
–  Different operating modes can be represented by different tables
–  No concurrency control or synchronization required
–  If completion time jitter requirements exist, can be captured in the schedule

•  When workload is mostly periodic and the schedule is cyclic,
timing constraints can be checked and enforced at each frame
boundary

•  Choice of frame size can minimize context switching and
communication overheads

•  Relatively easy to validate, test and certify

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Clock-driven Scheduling: Disadvantages

•  Inflexible
–  Pre-compilation of knowledge into scheduling tables means that if anything

changes materially, have to redo the table generation
–  Best suited for systems which are rarely modified once built

•  Other disadvantages:
–  Release times of all jobs must be fixed
–  All possible combinations of periodic tasks that can execute at the same

time must be known a priori, so that the combined schedule can be pre-
computed

–  The treatment of aperiodic jobs is very primitive
•  Unlikely to yield acceptable response times if a significant amount of soft real-

time computation exists

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

We have discussed:
•  Static, clock-driven schedules and the cyclic executive
•  Handling aperiodic jobs

–  Slack stealing

•  Handling sporadic jobs
•  Advantages and disadvantages of clock driven scheduling

•  Clock-driven scheduling applicable to static systems, small

number of aperiodic jobs; the next lecture begins our study
of priority scheduling for more dynamic environments…

