Overview of Real-Time Scheduling

Real-Time and Embedded Systems (M)
Lecture 3

rsity of Glasgow

Copyright © 2005 Unive

Lecture Outline

* Overview of real-time scheduling algorithms
— Clock-driven
— Weighted round-robin
— Priority-driven
e Dynamic vs. static
* Deadline scheduling: EDF and LST
» Validation

» Outline relative strengths, weaknesses

Material corresponds to chapter 4 of Liu’ s book

rsity of Glasgow

Copyright © 2005 Unive

Approaches to Real-Time Scheduling

Different classes of scheduling algorithm used 1n real-time systems:

* Clock-driven
— Primarily used for hard real-time systems where all properties of all jobs are
known at design time, such that offline scheduling techniques can be used
* Weighted round-robin
— Primarily used for scheduling real-time traffic in high-speed, switched
networks
 Priority-driven
— Primarily used for more dynamic real-time systems with a mix of time-

based and event-based activities, where the system must adapt to changing
conditions and events

Look at the properties of each 1n turn...

Copyright © 2005 University of Glasgow

Clock-Driven Scheduling

» Decisions about what jobs execute at what times are made at
specific time 1nstants
— These 1nstants are chosen before the system begins execution

— Usually regularly spaced, implemented using a periodic timer interrupt

» Scheduler awakes after each interrupt, schedules the job to execute for the next
period, then blocks itself until the next interrupt

« E.g. the helicopter example with an interrupt every !/,4, of a second

* E.g. the furnace control example, with an interrupt every 100ms

« Typically in clock-driven systems:

— All parameters of the real-time jobs are fixed and known

— A schedule of the jobs 1s computed off-line and 1s stored for use at run-time;
as a result, scheduling overhead at run-time can be minimized

— Simple and straight-forward, not flexible

[Will discuss in more detail in lecture 4]

rsity of Glasgow

Copyright © 2005 Unive

Round-Robin Scheduling

* Regular round-robin scheduling 1s commonly used for scheduling
time-shared applications
— Every job joins a FIFO queue when it 1s ready for execution

— When the scheduler runs, it schedules the job at the head of the queue to
execute for at most one time slice
» Sometimes called a quantum — typically O(tens of ms)

— If the job has not completed by the end of its quantum, it 1s preempted and
placed at the end of the queue

— When there are n ready jobs in the queue, each job gets one slice every n
time slices (n time slices is called a round)

rsity of Glasgow

Copyright © 2005 Unive

Weighted Round-Robin Scheduling

* In weighted round robin each job J; is assigned a weight w;; the
job will receive w, consecutive time slices each round, and the

duration of a round 1s 7_1w ;
— Equivalent to regular round robin if all weights equal 1

— Simple to implement, since it doesn’ t require a sorted priority queue

 Partitions capacity between jobs according to some ratio

« Offers throughput guarantees
— Each job makes a certain amount of progress each round

Copyright © 2005 University of Glasgow

Weighted Round-Robin Scheduling

* By giving each job a fixed fraction of the processor time, a round-
robin scheduler may delay the completion of every job
— A precedence constrained job may be assigned processor time, even while it

waits for its predecessor to complete; a job can’ t take the time assigned to
1ts successor to finish earlier

— Not an issue for jobs that can incrementally consume output from their
predecessor, since they execute concurrently in a pipelined fashion
* E.g. Jobs communicating using UNIX pipes

« E.g. Wormhole switching networks, where message transmission is carried out
in a pipeline fashion and a downstream switch can begin to transmit an earlier
portion of a message, without having to wait for the arrival of the later portion

« Weighted round-robin is primarily used for real-time networking;
will discuss more 1n lecture 17

rsity of Glasgow

Copyright © 2005 Unive

Priority-Driven Scheduling

e Assign priorities to jobs, based on some algorithm
« Make scheduling decisions based on the priorities, when events

such as releases and job completions occur

— Priority scheduling algorithms are event-driven

— Jobs are placed in one or more queues; at each event, the ready job with the
highest priority 1s executed

— The assignment of jobs to priority queues, along with rules such a whether
preemption is allowed, completely defines a priority scheduling algorithm

 Priority-driven algorithms make locally optimal decisions about
which job to run
— Locally optimal scheduling decisions are often not globally optimal

— Priority-driven algorithms never intentionally leave any resource idle

» Leaving a resource idle is not locally optimal

rsity of Glasgow

Copyright © 2005 Unive

Example: Priority-Driven Scheduling

« Consider the following task:
— Jobs J,, J,, ..., Jg, where J; had higher priority than J, 1fi <k

1,03

Release time
O e
1, 01 1, 072 J: gzu Execution time

— Jobs are scheduled on two processors P, and P,
— Jobs communicate via shared memory, so communication cost is negligible
— The schedulers keep one common priority queue of ready jobs

— All jobs are preemptable; scheduling decisions are made whenever some
job becomes ready for execution or a job completes

Copyright © 2005 University of Glasgow

Example: Priority-Driven Scheduling

Time Not yet Released but not Ready to run P, P, Completed
released yet ready to run
0 5 w, 8 7 1 2~ Release J,
1 5 4,6,8 7 B RE T
2 5 4,6,8 T— L 1| 37 Release Jy
3 5 6,8 ~4 7. 1,23
\\ ’ — 9“9
4 Js preempts J. 6,8 /7\ 4 \?45) 1,23
5 6, 8 — 7 5. 1,234
6 6,8 7 1,2,3,4,5
7 6, 8 — Y 1,2,3,4,5
" ~—_ —~—— > S0 > T
. \Jgreleased !when Js, J; complete ;6 ~ - 1234 5\: .
J, released when J,, Js, J; complete
9 6 1,2,3,4,5,7,8
10 6 1,2,3,4,5,7,8
11 6 1,2,3,4,5,7,8
12 1,2,3,4,5,6,7,8

Copyright © 2005 University of Glasgow

Example: Priority-Driven Scheduling

Time | Not yet Released but not | Ready to run | P, P, Completed
released yet ready to run
0 5 3,4,6,8 7 1 _ 2~
1 5 4,6,8 7 T RE T
2 5 4, i 7 \\1: 3 ’?\
> ~
3 5 6, 8 4 7 1,2,3
5 6, 8 e 7 1,2,3,4
6 6,8 5 T 1234
7 N~— —~6 ™8 [,2.3.2.5,7
=
8 6 1,2,3,4,5,7,8
9 . 6 1,2,3,4,5,7,8
What if jobs cannot be preempted?
10 . . 6~_ 1,2,3,4,5,7,8
The start time of J; 1s delayed, but —=
1 the overall task completes earlier... 1,2,3,4,5,6,7,8
12 1,2,3,4,5,6,7,8

rsity of Glasgow

Copyright © 2005 Unive

Example: Priority-Driven Scheduling

* Note: The ability to preempt lower priority jobs slowed down the
overall completion of the task
— This 1s not a general rule, but shows that priority scheduling results can be
non-intuitive
— Different priority scheduling algorithms can have very different properties

« Tracing execution of jobs using tables 1s an effective way to
demonstrate correctness for systems with periodic tasks and
fixed timing constraints, execution times, resource usage

— Show that the system enters a repeating pattern of execution, and each
hyper-period of that pattern meets all deadlines

— Proof by exhaustive simulation
* Provided the system has a manageably small number of jobs

Copyright © 2005 University of Glasgow

Priority-Driven Scheduling

e Most scheduling algorithms used in non real-time systems are

priority-driven

— First-In-First-Out

— Last-In-First-Out

— Shortest-Execution-Time-First

} Assign priority based on release time

- . . Assign priority based on execution time
— Longest-Execution-Time-First } el p Y

» Real-time priority scheduling assigns priorities based on deadline

or some other timing constraint:
— Earliest deadline first

— Least slack time first
— Etc.

rsity of Glasgow

Copyright © 2005 Unive

Priority Scheduling Based on Deadlines

« Earliest deadline first (EDF)

— Assign priority to jobs based on deadline
— Earlier the deadline, higher the priority
— Simple, just requires knowledge of deadlines

e Least Slack Time first (LST)

— A job J; has deadline d,, execution time e;, and was released at time 7,
— Attime ¢ <d.:

the remaining execution time ., = e; - (£ - 7,)

the slack time ¢, ., =d, - - .,

1

— Assign priority to jobs based on slack time, ¢, ,
— The smaller the slack time, the higher the priority
— More complex, requires knowledge of execution times and deadlines

« Knowing the actual execution time is often difficult a priori, since it depends on
the data, need to use worst case estimates (= poor performance)

Copyright © 2005 University of Glasgow

Optimality of EDF and LST

e These algorithms are optimal — 1.e. they will always produce a
feasible schedule if one exists — on a single processor, as long as
preemption is allowed and jobs do not contend for resources

e Qutline proof for EDF:

1. Any feasible schedule can be transformed into an EDF schedule

« IfJ; is scheduled to execute before J,, but J,' s deadline is later than J, s then
either:
* The release time of J, is after the J, completes => they’ re already in EDF order
* The release time of J, is before the end of the interval in which J; executes
« Swap J, and J, (this is always possible, since J;" s deadline is later than J, s)
* Move any jobs following idle periods forward into the idle period
=> the result is an EDF schedule [See book for worked example]

2. So, if EDF fails to produce a feasible schedule, no feasible schedule exists

» If a feasible schedule did exist it could be transformed into an EDF schedule,
which would contradict the statement that EDF failed to produce a feasible
schedule

[Proof for LST is similar]

rsity of Glasgow

Copyright © 2005 Unive

Non-Optimality of EDF and LST

« Neither algorithm is optimal if jobs are non-preemptable or if
there 1s more than one processor

— The book has examples which demonstrate EDF and LST producing
infeasible schedules 1n these cases

— Proof-by-counterexample

 EDF and LST are simple priority-driven scheduling algorithms
introduced to show how we can reason about such algorithms

— Lectures 5-8 discuss other priority-driven scheduling algorithms

b

rsity of Glasgow

Copyright © 2005 Unive

Dynamic vs. Static Priority Scheduling

 If jobs are scheduled on multiple processors, and a job can be
dispatched from the priority run queue to any of the
processors, the system 1s dynamic

* A job migrates 1f it starts execution on one processor and 1is
resumed on a different processor

« Ifjobs are partitioned into subsystems, and each subsystem is
bound statically to a processor, we have a static system

» Expect static systems to have inferior performance (in terms of the
makespan — the overall response time — of the jobs) relative
to dynamic systems

— But it is possible to validate static systems, whereas this 1s not always true
for dynamic systems

— For this reason, most sard real time systems are static

Copyright © 2005 University of Glasgow

Effective Release Times and Deadlines

* Sometimes the release time of a job may be later than that of its
successors, or its deadline may be earlier than that specified for its

predecessors

« This makes no sense: derive an effective release time or effective
deadline consistent with all precedence constraints, and schedule
using that

— Effective release time
« Ifajob has no predecessors, its effective release time is its release time

 If it has predecessors, its effective release time is the maximum of its release
time and the effective release times of its predecessors

— Effective deadline
 Ifajob has no successors, its effective deadline is its deadline

It if has successors, its effective deadline is the minimum of its deadline and the
effective deadline of its successors

[Slightly more complex rules if multiple processors — see book]

Copyright © 2005 University of Glasgow

Validating Priority-Driven Scheduling

 Priority-driven scheduling has many advantages over clock-driven
scheduling

— Better suited to applications with varying time and resource requirements,
since needs less a priori information

— Run-time overheads are small

* But not widely used until recently, since difficult to validate
— Scheduling anomalies can occur for multiprocessor or non-preemptable
systems, or those which share resources

» Reducing the execution time of a job in a task can increase the total response
time of the task (see book for example)

* Not sufficient to show correctness with worse-case execution times, need to
simulate with all possible execution times for all jobs comprising a task
— Can be proved that anomalies do not occur for independent, preemptable,
jobs with fixed release times executed using any priority-driven scheduler
on a single processor

» Various stronger results exist for particular priority-driven algorithms

rsity of Glasgow

Copyright © 2005 Unive

Summary

« Have outlined different approaches to scheduling:
— Clock-driven
— Weighted round-robin
— Priority-driven

and some of their constraints

 Next session will be a tutorial to review the material covered to
date, before we move onto detailed discussion of scheduling

* Problem set 1 now available: due at S5pm on 25th January

