
Overview of Real-Time Scheduling 

Real-Time and Embedded Systems (M) 
Lecture 3 
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Lecture Outline 

•  Overview of real-time scheduling algorithms 
–  Clock-driven 
–  Weighted round-robin 
–  Priority-driven 

•  Dynamic vs. static 
•  Deadline scheduling: EDF and LST 
•  Validation 

•  Outline relative strengths, weaknesses 

 
Material corresponds to chapter 4 of Liu’s book 
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Approaches to Real-Time Scheduling 

Different classes of scheduling algorithm used in real-time systems: 
•  Clock-driven 

–  Primarily used for hard real-time systems where all properties of all jobs are 
known at design time, such that offline scheduling techniques can be used 

•  Weighted round-robin 
–  Primarily used for scheduling real-time traffic in high-speed, switched 

networks 

•  Priority-driven 
–  Primarily used for more dynamic real-time systems with a mix of time-

based and event-based activities, where the system must adapt to changing 
conditions and events 

Look at the properties of each in turn… 
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Clock-Driven Scheduling 

•  Decisions about what jobs execute at what times are made at 
specific time instants 
–  These instants are chosen before the system begins execution 
–  Usually regularly spaced, implemented using a periodic timer interrupt 

•  Scheduler awakes after each interrupt, schedules the job to execute for the next 
period, then blocks itself until the next interrupt 

•  E.g. the helicopter example with an interrupt every 1/180
th of a second 

•  E.g. the furnace control example, with an interrupt every 100ms 

•  Typically in clock-driven systems: 
–  All parameters of the real-time jobs are fixed and known 
–  A schedule of the jobs is computed off-line and is stored for use at run-time; 

as a result, scheduling overhead at run-time can be minimized 
–  Simple and straight-forward, not flexible 

 
[Will discuss in more detail in lecture 4] 
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•  Regular round-robin scheduling is commonly used for scheduling 
time-shared applications 
–  Every job joins a FIFO queue when it is ready for execution 
–  When the scheduler runs, it schedules the job at the head of the queue to 

execute for at most one time slice 
•  Sometimes called a quantum – typically O(tens of ms) 

–  If the job has not completed by the end of its quantum, it is preempted and 
placed at the end of the queue 

–  When there are n ready jobs in the queue, each job gets one slice every n 
time slices (n time slices is called a round) 

Round-Robin Scheduling 
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Weighted Round-Robin Scheduling 

•  In weighted round robin each job Ji is assigned a weight wi; the 
job will receive wi consecutive time slices each round, and the 
duration of a round is 

–  Equivalent to regular round robin if all weights equal 1 
–  Simple to implement, since it doesn’t require a sorted priority queue 

•  Partitions capacity between jobs according to some ratio 
•  Offers throughput guarantees 

–  Each job makes a certain amount of progress each round 

€ 

wii=1

n
∑
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Weighted Round-Robin Scheduling 

•  By giving each job a fixed fraction of the processor time, a round-
robin scheduler may delay the completion of every job 
–  A precedence constrained job may be assigned processor time, even while it 

waits for its predecessor to complete; a job can’t take the time assigned to 
its successor to finish earlier 

–  Not an issue for jobs that can incrementally consume output from their 
predecessor, since they execute concurrently in a pipelined fashion 

•  E.g. Jobs communicating using UNIX pipes 
•  E.g. Wormhole switching networks, where message transmission is carried out 

in a pipeline fashion and a downstream switch can begin to transmit an earlier 
portion of a message, without having to wait for the arrival of the later portion 

•  Weighted round-robin is primarily used for real-time networking; 
will discuss more in lecture 17 
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Priority-Driven Scheduling 

•  Assign priorities to jobs, based on some algorithm 
•  Make scheduling decisions based on the priorities, when events 

such as releases and job completions occur 
–  Priority scheduling algorithms are event-driven 
–  Jobs are placed in one or more queues; at each event, the ready job with the 

highest priority is executed 
–  The assignment of jobs to priority queues, along with rules such a whether 

preemption is allowed, completely defines a priority scheduling algorithm 

•  Priority-driven algorithms make locally optimal decisions about 
which job to run 
–  Locally optimal scheduling decisions are often not globally optimal 
–  Priority-driven algorithms never intentionally leave any resource idle 

•  Leaving a resource idle is not locally optimal 
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Example: Priority-Driven Scheduling 

•  Consider the following task: 
–  Jobs J1, J2, …, J8, where Ji had higher priority than Jk if i < k 

J5 4/2 

J1 0/3 

J2 0/1 J3 0/2 J4 0/2 

J6 0/4 

J7 0/4 J8 0/1 

Release time 

Execution time 

–  Jobs are scheduled on two processors P1 and P2 
–  Jobs communicate via shared memory, so communication cost is negligible 
–  The schedulers keep one common priority queue of ready jobs 
–  All jobs are preemptable; scheduling decisions are made whenever some 

job becomes ready for execution or a job completes 
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Example: Priority-Driven Scheduling 

Time Not yet 
released 

Released but not 
yet ready to run 

Ready to run P1 P2 Completed 

0 5 3, 4, 6, 8 7 1 2 

1 5 4, 6, 8 7 1 3 2 

2 5 4, 6, 8 7 1 3 2 

3 5 6, 8 4 7 1, 2, 3 

4 6, 8 7 4 5 1, 2, 3 

5 6, 8 7 5 1, 2, 3, 4 

6 6, 8 7 1, 2, 3, 4, 5 

7 6, 8 7 1, 2, 3, 4, 5 

8 6 8 1, 2, 3, 4, 5, 7 

9 6 1, 2, 3, 4, 5, 7, 8 

10 6 1, 2, 3, 4, 5, 7, 8 

11 6 1, 2, 3, 4, 5, 7, 8 

12 1, 2, 3, 4, 5, 6, 7, 8 

Release J3 

Release J4 

J5 preempts J7 

J6 released when J2, J5, J7 complete 

J8 released when J5, J7 complete 



C
op

yr
ig

ht
 ©

 2
00

5 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
 

Example: Priority-Driven Scheduling 

Time Not yet 
released 

Released but not 
yet ready to run 

Ready to run P1 P2 Completed 

0 5 3, 4, 6, 8 7 1 2 

1 5 4, 6, 8 7 1 3 2 

2 5 4, 6, 8 7 1 3 2 

3 5 6, 8 4 7 1, 2, 3 

4 6, 8 5 4 7 1, 2, 3 

5 6, 8 5 7 1, 2, 3, 4 

6 6, 8 5 7 1, 2, 3, 4 

7 6 8 1, 2, 3, 4, 5, 7 

8 6 1, 2, 3, 4, 5, 7, 8 

9 6 1, 2, 3, 4, 5, 7, 8 

10 6 1, 2, 3, 4, 5, 7, 8 

11 1, 2, 3, 4, 5, 6, 7, 8 

12 1, 2, 3, 4, 5, 6, 7, 8 

What if jobs cannot be preempted? 

The start time of J5 is delayed, but 
the overall task completes earlier… 
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Example: Priority-Driven Scheduling 

•  Note: The ability to preempt lower priority jobs slowed down the 
overall completion of the task 
–  This is not a general rule, but shows that priority scheduling results can be 

non-intuitive 
–  Different priority scheduling algorithms can have very different properties 

•  Tracing execution of jobs using tables is an effective way to 
demonstrate correctness for systems with periodic tasks and  
fixed timing constraints, execution times, resource usage 
–  Show that the system enters a repeating pattern of execution, and each 

hyper-period of that pattern meets all deadlines 
–  Proof by exhaustive simulation 

•  Provided the system has a manageably small number of jobs 
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•  Most scheduling algorithms used in non real-time systems are 
priority-driven 
–  First-In-First-Out 
–  Last-In-First-Out 
–  Shortest-Execution-Time-First 
–  Longest-Execution-Time-First 

•  Real-time priority scheduling assigns priorities based on deadline 
or some other timing constraint: 
–  Earliest deadline first 
–  Least slack time first 
–  Etc. 

} Assign priority based on release time 

} Assign priority based on execution time 

Priority-Driven Scheduling 
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Priority Scheduling Based on Deadlines 

•  Earliest deadline first (EDF) 
–  Assign priority to jobs based on deadline 
–  Earlier the deadline, higher the priority 
–  Simple, just requires knowledge of deadlines 

•  Least Slack Time first (LST) 
–  A job Ji has deadline di, execution time ei, and was released at time ri 
–  At time t < di: 

  the remaining execution time trem = ei - (t - ri)  
 the slack time tslack = di - t - trem 

–  Assign priority to jobs based on slack time, tslack 
–  The smaller the slack time, the higher the priority 
–  More complex, requires knowledge of execution times and deadlines 

•  Knowing the actual execution time is often difficult a priori, since it depends on 
the data, need to use worst case estimates (⇒ poor performance) 
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Optimality of EDF and LST 

•  These algorithms are optimal – i.e. they will always produce a 
feasible schedule if one exists – on a single processor, as long as 
preemption is allowed and jobs do not contend for resources 

•  Outline proof for EDF:  
1.  Any feasible schedule can be transformed into an EDF schedule 

•  If Ji is scheduled to execute before Jk, but Ji’s deadline is later than Jk’s then 
either: 
•  The release time of Jk is after the Ji completes ⇒ they’re already in EDF order 
•  The release time of Jk is before the end of the interval in which Ji executes 

•  Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s) 
•  Move any jobs following idle periods forward into the idle period 

 ⇒ the result is an EDF schedule   [See book for worked example] 

2.  So, if EDF fails to produce a feasible schedule, no feasible schedule exists 
•  If a feasible schedule did exist it could be transformed into an EDF schedule, 

which would contradict the statement that EDF failed to produce a feasible 
schedule 
      [Proof for LST is similar] 
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Non-Optimality of EDF and LST 

•  Neither algorithm is optimal if jobs are non-preemptable or if 
there is more than one processor 
–  The book has examples which demonstrate EDF and LST producing 

infeasible schedules in these cases 
–  Proof-by-counterexample 

•  EDF and LST are simple priority-driven scheduling algorithms; 
introduced to show how we can reason about such algorithms 
–  Lectures 5-8 discuss other priority-driven scheduling algorithms 
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Dynamic vs. Static Priority Scheduling 

•  If jobs are scheduled on multiple processors, and a job can be 
 dispatched from the priority run queue to any of the 

processors, the system is dynamic 
•  A job migrates if it starts execution on one processor and is 

resumed on a different processor 
•  If jobs are partitioned into subsystems, and each subsystem is 

bound statically to a processor, we have a static system 
•  Expect static systems to have inferior performance (in terms of the 

makespan – the overall response time – of the jobs) relative 
to dynamic systems 
–  But it is possible to validate static systems, whereas this is not always true 

for dynamic systems 
–  For this reason, most hard real time systems are static 
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Effective Release Times and Deadlines 

•  Sometimes the release time of a job may be later than that of its 
successors, or its deadline may be earlier than that specified for its 
predecessors 

•  This makes no sense: derive an effective release time or effective 
deadline consistent with all precedence constraints, and schedule 
using that 
–  Effective release time 

•  If a job has no predecessors, its effective release time is its release time 
•  If it has predecessors, its effective release time is the maximum of its release 

time and the effective release times of its predecessors 
–  Effective deadline 

•  If a job has no successors, its effective deadline is its deadline 
•  It if has successors, its effective deadline is the minimum of its deadline and the 

effective deadline of its successors 
 

[Slightly more complex rules if multiple processors – see book] 
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Validating Priority-Driven Scheduling 

•  Priority-driven scheduling has many advantages over clock-driven 
scheduling 
–  Better suited to applications with varying time and resource requirements, 

since needs less a priori information 
–  Run-time overheads are small 

•  But not widely used until recently, since difficult to validate 
–  Scheduling anomalies can occur for multiprocessor or non-preemptable 

systems, or those which share resources 
•  Reducing the execution time of a job in a task can increase the total response 

time of the task (see book for example) 
•  Not sufficient to show correctness with worse-case execution times, need to 

simulate with all possible execution times for all jobs comprising a task 
–  Can be proved that anomalies do not occur for independent, preemptable, 

jobs with fixed release times executed using any priority-driven scheduler 
on a single processor 

•  Various stronger results exist for particular priority-driven algorithms 
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Summary 

•  Have outlined different approaches to scheduling: 
–  Clock-driven 
–  Weighted round-robin 
–  Priority-driven 

 and some of their constraints 
 
•  Next session will be a tutorial to review the material covered to 

date, before we move onto detailed discussion of scheduling 

•  Problem set 1 now available: due at 5pm on 25th January 


