
Overview of Real-Time Scheduling

Real-Time and Embedded Systems (M)
Lecture 3

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Overview of real-time scheduling algorithms
–  Clock-driven
–  Weighted round-robin
–  Priority-driven

•  Dynamic vs. static
•  Deadline scheduling: EDF and LST
•  Validation

•  Outline relative strengths, weaknesses

Material corresponds to chapter 4 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Approaches to Real-Time Scheduling

Different classes of scheduling algorithm used in real-time systems:
•  Clock-driven

–  Primarily used for hard real-time systems where all properties of all jobs are
known at design time, such that offline scheduling techniques can be used

•  Weighted round-robin
–  Primarily used for scheduling real-time traffic in high-speed, switched

networks

•  Priority-driven
–  Primarily used for more dynamic real-time systems with a mix of time-

based and event-based activities, where the system must adapt to changing
conditions and events

Look at the properties of each in turn…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Clock-Driven Scheduling

•  Decisions about what jobs execute at what times are made at
specific time instants
–  These instants are chosen before the system begins execution
–  Usually regularly spaced, implemented using a periodic timer interrupt

•  Scheduler awakes after each interrupt, schedules the job to execute for the next
period, then blocks itself until the next interrupt

•  E.g. the helicopter example with an interrupt every 1/180
th of a second

•  E.g. the furnace control example, with an interrupt every 100ms

•  Typically in clock-driven systems:
–  All parameters of the real-time jobs are fixed and known
–  A schedule of the jobs is computed off-line and is stored for use at run-time;

as a result, scheduling overhead at run-time can be minimized
–  Simple and straight-forward, not flexible

[Will discuss in more detail in lecture 4]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  Regular round-robin scheduling is commonly used for scheduling
time-shared applications
–  Every job joins a FIFO queue when it is ready for execution
–  When the scheduler runs, it schedules the job at the head of the queue to

execute for at most one time slice
•  Sometimes called a quantum – typically O(tens of ms)

–  If the job has not completed by the end of its quantum, it is preempted and
placed at the end of the queue

–  When there are n ready jobs in the queue, each job gets one slice every n
time slices (n time slices is called a round)

Round-Robin Scheduling

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Weighted Round-Robin Scheduling

•  In weighted round robin each job Ji is assigned a weight wi; the
job will receive wi consecutive time slices each round, and the
duration of a round is

–  Equivalent to regular round robin if all weights equal 1
–  Simple to implement, since it doesn’t require a sorted priority queue

•  Partitions capacity between jobs according to some ratio
•  Offers throughput guarantees

–  Each job makes a certain amount of progress each round

€

wii=1

n
∑

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Weighted Round-Robin Scheduling

•  By giving each job a fixed fraction of the processor time, a round-
robin scheduler may delay the completion of every job
–  A precedence constrained job may be assigned processor time, even while it

waits for its predecessor to complete; a job can’t take the time assigned to
its successor to finish earlier

–  Not an issue for jobs that can incrementally consume output from their
predecessor, since they execute concurrently in a pipelined fashion

•  E.g. Jobs communicating using UNIX pipes
•  E.g. Wormhole switching networks, where message transmission is carried out

in a pipeline fashion and a downstream switch can begin to transmit an earlier
portion of a message, without having to wait for the arrival of the later portion

•  Weighted round-robin is primarily used for real-time networking;
will discuss more in lecture 17

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Priority-Driven Scheduling

•  Assign priorities to jobs, based on some algorithm
•  Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
–  Priority scheduling algorithms are event-driven
–  Jobs are placed in one or more queues; at each event, the ready job with the

highest priority is executed
–  The assignment of jobs to priority queues, along with rules such a whether

preemption is allowed, completely defines a priority scheduling algorithm

•  Priority-driven algorithms make locally optimal decisions about
which job to run
–  Locally optimal scheduling decisions are often not globally optimal
–  Priority-driven algorithms never intentionally leave any resource idle

•  Leaving a resource idle is not locally optimal

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Priority-Driven Scheduling

•  Consider the following task:
–  Jobs J1, J2, …, J8, where Ji had higher priority than Jk if i < k

J5 4/2

J1 0/3

J2 0/1 J3 0/2 J4 0/2

J6 0/4

J7 0/4 J8 0/1

Release time

Execution time

–  Jobs are scheduled on two processors P1 and P2
–  Jobs communicate via shared memory, so communication cost is negligible
–  The schedulers keep one common priority queue of ready jobs
–  All jobs are preemptable; scheduling decisions are made whenever some

job becomes ready for execution or a job completes

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Priority-Driven Scheduling

Time Not yet
released

Released but not
yet ready to run

Ready to run P1 P2 Completed

0 5 3, 4, 6, 8 7 1 2

1 5 4, 6, 8 7 1 3 2

2 5 4, 6, 8 7 1 3 2

3 5 6, 8 4 7 1, 2, 3

4 6, 8 7 4 5 1, 2, 3

5 6, 8 7 5 1, 2, 3, 4

6 6, 8 7 1, 2, 3, 4, 5

7 6, 8 7 1, 2, 3, 4, 5

8 6 8 1, 2, 3, 4, 5, 7

9 6 1, 2, 3, 4, 5, 7, 8

10 6 1, 2, 3, 4, 5, 7, 8

11 6 1, 2, 3, 4, 5, 7, 8

12 1, 2, 3, 4, 5, 6, 7, 8

Release J3

Release J4

J5 preempts J7

J6 released when J2, J5, J7 complete

J8 released when J5, J7 complete

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Priority-Driven Scheduling

Time Not yet
released

Released but not
yet ready to run

Ready to run P1 P2 Completed

0 5 3, 4, 6, 8 7 1 2

1 5 4, 6, 8 7 1 3 2

2 5 4, 6, 8 7 1 3 2

3 5 6, 8 4 7 1, 2, 3

4 6, 8 5 4 7 1, 2, 3

5 6, 8 5 7 1, 2, 3, 4

6 6, 8 5 7 1, 2, 3, 4

7 6 8 1, 2, 3, 4, 5, 7

8 6 1, 2, 3, 4, 5, 7, 8

9 6 1, 2, 3, 4, 5, 7, 8

10 6 1, 2, 3, 4, 5, 7, 8

11 1, 2, 3, 4, 5, 6, 7, 8

12 1, 2, 3, 4, 5, 6, 7, 8

What if jobs cannot be preempted?

The start time of J5 is delayed, but
the overall task completes earlier…

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example: Priority-Driven Scheduling

•  Note: The ability to preempt lower priority jobs slowed down the
overall completion of the task
–  This is not a general rule, but shows that priority scheduling results can be

non-intuitive
–  Different priority scheduling algorithms can have very different properties

•  Tracing execution of jobs using tables is an effective way to
demonstrate correctness for systems with periodic tasks and
fixed timing constraints, execution times, resource usage
–  Show that the system enters a repeating pattern of execution, and each

hyper-period of that pattern meets all deadlines
–  Proof by exhaustive simulation

•  Provided the system has a manageably small number of jobs

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

•  Most scheduling algorithms used in non real-time systems are
priority-driven
–  First-In-First-Out
–  Last-In-First-Out
–  Shortest-Execution-Time-First
–  Longest-Execution-Time-First

•  Real-time priority scheduling assigns priorities based on deadline
or some other timing constraint:
–  Earliest deadline first
–  Least slack time first
–  Etc.

} Assign priority based on release time

} Assign priority based on execution time

Priority-Driven Scheduling

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Priority Scheduling Based on Deadlines

•  Earliest deadline first (EDF)
–  Assign priority to jobs based on deadline
–  Earlier the deadline, higher the priority
–  Simple, just requires knowledge of deadlines

•  Least Slack Time first (LST)
–  A job Ji has deadline di, execution time ei, and was released at time ri
–  At time t < di:

 the remaining execution time trem = ei - (t - ri)
 the slack time tslack = di - t - trem

–  Assign priority to jobs based on slack time, tslack
–  The smaller the slack time, the higher the priority
–  More complex, requires knowledge of execution times and deadlines

•  Knowing the actual execution time is often difficult a priori, since it depends on
the data, need to use worst case estimates (⇒ poor performance)

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Optimality of EDF and LST

•  These algorithms are optimal – i.e. they will always produce a
feasible schedule if one exists – on a single processor, as long as
preemption is allowed and jobs do not contend for resources

•  Outline proof for EDF:
1.  Any feasible schedule can be transformed into an EDF schedule

•  If Ji is scheduled to execute before Jk, but Ji’s deadline is later than Jk’s then
either:
•  The release time of Jk is after the Ji completes ⇒ they’re already in EDF order
•  The release time of Jk is before the end of the interval in which Ji executes

•  Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s)
•  Move any jobs following idle periods forward into the idle period

 ⇒ the result is an EDF schedule [See book for worked example]

2.  So, if EDF fails to produce a feasible schedule, no feasible schedule exists
•  If a feasible schedule did exist it could be transformed into an EDF schedule,

which would contradict the statement that EDF failed to produce a feasible
schedule
 [Proof for LST is similar]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Non-Optimality of EDF and LST

•  Neither algorithm is optimal if jobs are non-preemptable or if
there is more than one processor
–  The book has examples which demonstrate EDF and LST producing

infeasible schedules in these cases
–  Proof-by-counterexample

•  EDF and LST are simple priority-driven scheduling algorithms;
introduced to show how we can reason about such algorithms
–  Lectures 5-8 discuss other priority-driven scheduling algorithms

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Dynamic vs. Static Priority Scheduling

•  If jobs are scheduled on multiple processors, and a job can be
 dispatched from the priority run queue to any of the

processors, the system is dynamic
•  A job migrates if it starts execution on one processor and is

resumed on a different processor
•  If jobs are partitioned into subsystems, and each subsystem is

bound statically to a processor, we have a static system
•  Expect static systems to have inferior performance (in terms of the

makespan – the overall response time – of the jobs) relative
to dynamic systems
–  But it is possible to validate static systems, whereas this is not always true

for dynamic systems
–  For this reason, most hard real time systems are static

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Effective Release Times and Deadlines

•  Sometimes the release time of a job may be later than that of its
successors, or its deadline may be earlier than that specified for its
predecessors

•  This makes no sense: derive an effective release time or effective
deadline consistent with all precedence constraints, and schedule
using that
–  Effective release time

•  If a job has no predecessors, its effective release time is its release time
•  If it has predecessors, its effective release time is the maximum of its release

time and the effective release times of its predecessors
–  Effective deadline

•  If a job has no successors, its effective deadline is its deadline
•  It if has successors, its effective deadline is the minimum of its deadline and the

effective deadline of its successors

[Slightly more complex rules if multiple processors – see book]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Validating Priority-Driven Scheduling

•  Priority-driven scheduling has many advantages over clock-driven
scheduling
–  Better suited to applications with varying time and resource requirements,

since needs less a priori information
–  Run-time overheads are small

•  But not widely used until recently, since difficult to validate
–  Scheduling anomalies can occur for multiprocessor or non-preemptable

systems, or those which share resources
•  Reducing the execution time of a job in a task can increase the total response

time of the task (see book for example)
•  Not sufficient to show correctness with worse-case execution times, need to

simulate with all possible execution times for all jobs comprising a task
–  Can be proved that anomalies do not occur for independent, preemptable,

jobs with fixed release times executed using any priority-driven scheduler
on a single processor

•  Various stronger results exist for particular priority-driven algorithms

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Have outlined different approaches to scheduling:
–  Clock-driven
–  Weighted round-robin
–  Priority-driven

 and some of their constraints

•  Next session will be a tutorial to review the material covered to

date, before we move onto detailed discussion of scheduling

•  Problem set 1 now available: due at 5pm on 25th January

