
A Reference Model for Real-Time
Systems

Real-Time and Embedded Systems (M)
Lecture 2

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Lecture Outline

•  Why a reference model?
•  Jobs and tasks
•  Processors and resources
•  Time and timing constraints

–  Hard real-time
–  Soft real-time

•  Periodic, aperiodic and sporadic tasks
•  Precedence constraints and dependencies
•  Scheduling

Material corresponds to chapters 2 and 3 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

A Reference Model of Real-Time Systems

•  Want to develop a model to let us reason about real-time systems
–  Consistent terminology
–  Lets us to focus on the important aspects of a system while ignoring the

irrelevant properties and details

•  Our reference model is characterized by:
–  A workload model that describes the applications supported by the system
–  A resource model that describes the system resources available to the

applications
–  Algorithms that define how the application system uses the resources at all

times

•  Today, we will focus on the first two elements of the reference
model; the models that describe the applications and resources
–  The remainder of the module will study the algorithms, using the definitions

from this lecture

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Jobs and Tasks

•  A job is a unit of work that is scheduled and executed by a system
–  e.g. computation of a control-law, computation of an FFT on sensor data,

transmission of a data packet, retrieval of a file

•  A task is a set of related jobs which jointly provide some function
–  e.g. the set of jobs that constitute the “maintain constant altitude” task,

keeping an airplane flying at a constant altitude

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Processors and Resources

•  A job executes – or is executed by the operating system – on a
processor and may depend on some resources

•  A processor, P, is an active component
–  E.g. A CPU, transmission link, disk, database server, etc.
–  Each processor has a speed attribute which determines the rate of progress a

job makes toward completion
•  May represent instructions-per-second for a CPU, bandwidth of a network, etc.

–  Two processors are of the same type if they are functionally identical and
can be used interchangeably

•  A resource, R, is a passive entity upon which jobs may depend
–  E.g. memory, sequence numbers, mutexes, database locks, etc.
–  Resources have different types and sizes, but do not have a speed attribute
–  Resources are usually reusable, and are not consumed by use

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Use of Resources

•  If the system contains ρ (“rho”) types of resource, this means:
–  There are ρ different types of serially reusable resources
–  There are one or more units of each type of resource, only one job can use

each unit at once (mutually exclusive access)
–  A job must obtain a unit of a needed resource, use it, then release it

•  A resource is plentiful if no job is ever prevented from executing
by the unavailability of units of the resource
–  Jobs never block when attempting to obtain a unit of a plentiful resource
–  We typically omit such resources from our discussion, since they don’t

impact performance or correctness

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Execution Time

•  A job Ji will execute for time ei
–  This is the amount of time required to complete the execution of Ji when it

executes alone and has all the resources it needs
–  Value of ei depends upon complexity of the job and speed of the processor

on which it is scheduled; may change for a variety of reasons:
•  Conditional branches
•  Cache memories and/or pipelines
•  Compression (e.g. MPEG video frames)

–  Execution times fall into an interval [ei
-, ei

+]; assume that we know this
interval for every hard real-time job, but not necessarily the actual ei

•  Terminology: (x, y] is an interval starting immediately after x, continuing up to
and including y

•  Often, we can validate a system using ei
+ for each job; we assume

ei = ei
+ and ignore the interval lower bound

–  Inefficient, but safe bound on execution time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Release and Response Time

•  Release time – the instant in time when a job becomes available
for execution
–  May not be exact: Release time jitter so ri is in the interval [ri

-, ri
+]

–  A job can be scheduled and executed at any time at, or after, its release
time, provided its data and control dependency conditions are met

•  Response time – the length of time from the release time of the job
to the time instant when it completes
–  Not the same as execution time, since may not execute continually

Job, Ji Time

Release time, ri

Response time

ri
+ ri

-

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Deadlines and Timing Constraints

•  Completion time – the instant at which a job completes execution
•  Relative deadline – the maximum allowable response time of a job
•  Absolute deadline – the instant of time by which a job is required

to be completed (often called simply the deadline)
–  absolute deadline = release time + relative deadline
–  Feasible interval for a job Ji is the interval (ri, di]

•  Deadlines are examples of timing constraints

Job, Ji Time

Response time

Relative deadline, Di

Absolute deadline, di

Completion time

ri
+ ri

-

Release time, ri

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example

•  A system to monitor and control a heating furnace
•  The system takes 20ms to initialize when turned on
•  After initialization, every 100 ms, the system:

–  Samples and reads the temperature sensor
–  Computes the control-law for the furnace to process temperature readings,

determine the correct flow rates of fuel, air and coolant
–  Adjusts flow rates to match computed values

•  The periodic computations can be stated in terms of release times
of the jobs computing the control-law: J0, J1, …, Jk, …
–  The release time of Jk is 20 + (k × 100) ms

J0

Time (ms)
0 20 120 220 220 320

J1 J2 J3 Release Time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Example

•  Suppose each job must complete before the release of the next job:
–  Jk’s relative deadline is 100 ms
–  Jk’s absolute deadline is 20 + ((k + 1) × 100) ms

•  Alternatively, each control-law computation may be required to
finish sooner – i.e. the relative deadline is smaller than the time
between jobs, allowing some slack time for other jobs

J0

Time (ms)
0 20 120 220 220 320

J1 J2 J3 Release Time

Relative deadline = 100ms
Absolute deadline

for J1 = 220ms
Slack time

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Hard vs. Soft Real-Time Systems

•  Tardiness – how late a job completes relative to its deadline
 lateness = completion time – absolute deadline
tardiness = max(0, lateness)

•  If a job must never miss its deadline, then the system is described
as hard real-time
–  A timing constraint is hard if the failure to meet it is considered a fatal fault;

this definition is based upon the functional criticality of a job
–  A timing constraint is hard if the usefulness of the results falls off abruptly

(or may even go negative) at the deadline
–  A timing constraint is hard if the user requires validation (formal proof or

exhaustive simulation) that the system always meets its timing constraint

•  If some deadlines can be missed occasionally, with acceptably low
probability, then the system is described as soft real-time
–  This is a statistical constraint

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Hard vs. Soft Real-Time Systems

•  Note: there may be no advantage in completing a job early
–  It is often better to keep jitter (variation in timing) in the response times of a

stream of jobs small

•  Timing constraints can be expressed in many ways:
–  Deterministic

•  e.g. the relative deadline of every control-law computation is 50 ms; the
response time of at most 1 out of 5 consecutive control-law computations
exceeds 50ms

–  Probabilistic
•  e.g. the probability of the response time exceeding 50 ms is less than 0.2

–  In terms of some usefulness function
•  e.g. the usefulness of every control-law computation is at least 0.8

[In practice, usually deterministic constraints, since easy to validate]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Examples: Hard & Soft Real-Time Systems

•  Hard real-time:
–  Flight control
–  Railway signalling
–  Anti-lock brakes
–  Etc.

•  Soft real-time:
–  Stock trading system
–  DVD player
–  Mobile phone
–  Etc.

Can you think of more examples?

Is the distinction always clear cut?

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Parameters of a Workload

•  As seen, each job Ji is characterized by several parameters:
–  temporal parameters and timing constraints
–  functional parameters; intrinsic properties of the job
–  resource parameters
–  interconnection parameters; dependencies with other jobs

•  The timing parameters of hard real-time jobs and tasks must be
known at all times – otherwise, we cannot ensure that the system
meets its hard real-time constraints
–  May also need to know about dependencies on other resources or jobs
–  The number of hard real-time jobs in a system may change, provided the

characteristics of all are known, and the system is engineered to meet its
timing constraints in all modes

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Modelling Periodic Tasks

•  A set of jobs that are executed repeatedly at regular time intervals
can be modelled as a periodic task

•  Each periodic task Ti is a sequence of jobs Ji,1, Ji,2, …, Ji,n
–  The phase of a task Ti is the release time ri,1 of the first job Ji,1 in the task. It

is denoted by ϕi (“phi”)
–  The period pi of a task Ti is the minimum length of all time intervals

between release times of consecutive jobs
–  The execution time ei of a task Ti is the maximum execution time of all jobs

in the periodic task
–  The period and execution time of every periodic task in the system are

known with reasonable accuracy at all times

•  The hyper-period of a set of periodic tasks is the least common
multiple of their periods: H = lcm(pi) for i = 1, 2, …, n
–  The time after which the pattern of job release/execution times starts to

repeat

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Modelling Periodic Tasks

•  The ratio ui = ei/pi is the utilization of task Ti
–  The fraction of time a periodic task with period pi and execution time ei

keeps a processor busy

•  The total utilization of a system is the sum of the utilizations of all
tasks in a system: U = ∑ui

•  We will usually assume the relative deadline for the jobs in a task
is equal to the period of the task
–  It can sometimes be shorter than the period, to allow slack time

⇒ Many useful, real-world, systems fit this model; and it is easy to
reason about such periodic tasks

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Responding to External Events

•  Many real-time systems are required to respond to external events
•  The jobs resulting from such events are sporadic or aperiodic jobs

–  A sporadic job has a hard deadlines
–  An aperiodic job has either a soft deadline or no deadline

•  The release time for sporadic or aperiodic jobs can be modelled as
a random variable with some probability distribution, A(x)
–  A(x) gives the probability that the release time of the job is not later than x

•  Alternatively, if discussing a stream of similar sporadic/aperiodic
jobs, A(x) can be viewed as the probability distribution of their
inter-release times

 [Note: sometimes the terms arrival time (or inter-arrival time) are used instead of
release time, due to their common use in queuing theory]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Modelling Sporadic and Aperiodic Tasks

•  A set of jobs that execute at irregular time intervals comprise a
sporadic or aperiodic task
–  Each sporadic/aperiodic task is a stream of sporadic/aperiodic jobs

•  The inter-arrival times between consecutive jobs in such a task
may vary widely according to probability distribution A(x) and can
be arbitrarily small

•  Similarly, the execution times of jobs are identically distributed
random variables with some probability distribution B(x)

⇒ Sporadic and aperiodic tasks occur in some real-time systems, and
greatly complicate modelling and reasoning

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Precedence Constraints and Dependencies

•  The jobs in a task, whether periodic, aperiodic or sporadic, may be
constrained to execute in a particular order
–  This is known as a precedence constraint
–  A job Ji is a predecessor of another job Jk (and Jk a successor of Ji) if Jk

cannot begin execution until the execution of Ji completes
•  Denote this by saying Ji < Jk

–  Ji is an immediate predecessor of Jk if Ji < Jk and there is no other job Jj
such that Ji < Jj < Jk

–  Ji and Jk are independent when neither Ji < Jk nor Jk < Ji

•  A job with a precedence constraint becomes ready for execution
once when its release time has passed and when all predecessors
have completed

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Task Graphs

(2,5]

(0,5]

(0,6]

1/2 2/3

Conditional block

branch join

(0,7] (2,9] (4,11] (6,13] (8,15]

(5,8] (8,11] (11,14] (14,17]

(4,8] (5,20]

(2,10]

•  Can represent the precedence constraints among jobs in a set J using a directed
graph G = (J, <); each vertex represents a job represented; a directed edge goes
from Ji to Jk if Ji is an immediate predecessor of Jk

Feasible
intervals

Independent Periodic jobs
ϕ=2, p=2, D=7

Periodic jobs, dependent
on immediate predecessor

ϕ=2, p=3, D=3

Jobs with
complex
dependencies

AND

OR Producer-Consumer

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Task Graphs: Dependencies & Constraints

•  Normally a job must wait for the completion of all immediate
predecessors; an AND constraint
–  Unfilled circle in the task graph

•  An OR constraint indicates that a job may begin after its release
time if only some of the immediate predecessors have completed
–  Unfilled squares in the task graph

•  Represent conditional branches and joins by filled in circles
•  Represent a pair of producer/consumer jobs with a dotted edge

•  Similar issues also apply to resources and resource dependencies
–  [Neither shown in this example]

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Functional Parameters

•  Jobs may have priority, and in some cases may be interrupted by a
higher priority job
–  A job is preemptable if its execution can be interrupted in this manner
–  A job is non-preemptable if it must run to completion once started

•  Many preemptable jobs have periods during which they cannot be preempted;
for example when accessing certain resources

–  The ability to preempt a job (or not) impacts the scheduling algorithm
–  The context switch time is the time taken to switch between jobs

•  Forms an overhead that must be accounted for when scheduling jobs

•  Response to missing a deadline can vary
–  Some jobs have optional parts, that can be omitted to save time (at the

expense of a poorer quality result)
–  Usefulness of late results varies; some applications tolerate some delay,

others do not

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling

•  Jobs are scheduled and allocated resources according to a chosen
set of scheduling algorithms and resource access-control
protocols; a scheduler implements these algorithms

•  A scheduler specifically assigns jobs to processors
•  A schedule is an assignment of all jobs in the system on the

available processors.
•  A valid schedule satisfies the following conditions:

–  Every processor is assigned to at most one job at any time
–  Every job is assigned at most one processor at any time
–  No job is scheduled before its release time
–  The total amount of processor time assigned to every job is equal to its

maximum or actual execution time
–  All the precedence and resource usage constraints are satisfied

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Scheduling

•  A valid schedule is also a feasible schedule if every job meets its
timing constraints.
–  Miss rate is the percentage of jobs that are executed but completed too late
–  Loss rate is the percentage of jobs that are not executed at all

•  A hard real time scheduling algorithm is optimal if the algorithm
always produces a feasible schedule if the given set of jobs has
feasible schedules.

C
op

yr
ig

ht
 ©

 2
00

5
U

ni
ve

rs
ity

 o
f G

la
sg

ow

Summary

•  Outline of terminology and a reference model:
–  Jobs and tasks
–  Processors and resources
–  Time and timing constraints

•  Hard real-time
•  Soft real-time

–  Periodic, aperiodic and sporadic tasks
–  Precedence constraints and dependencies
–  Scheduling

Corresponds to the material in chapters 2 and 3 of Liu’s book…
…tomorrow we move onto scheduling and the material in chapter 4

