A Reference Model for Real-Time
Systems

Real-Time and Embedded Systems (M)
Lecture 2

rsity of Glasgow

Copyright © 2005 Unive

Lecture Outline

 Why a reference model?
 Jobs and tasks
 Processors and resources

e Time and timing constraints
— Hard real-time

— Soft real-time
» Periodic, aperiodic and sporadic tasks
» Precedence constraints and dependencies

* Scheduling

Material corresponds to chapters 2 and 3 of Liu’ s book

rsity of Glasgow

Copyright © 2005 Unive

A Reference Model of Real-Time Systems

 Want to develop a model to let us reason about real-time systems
— Consistent terminology
— Lets us to focus on the important aspects of a system while ignoring the
irrelevant properties and details
* Our reference model 1s characterized by:
— A workload model that describes the applications supported by the system

— A resource model that describes the system resources available to the
applications

— Algorithms that define how the application system uses the resources at all
times
» Today, we will focus on the first two elements of the reference
model; the models that describe the applications and resources

— The remainder of the module will study the algorithms, using the definitions
from this lecture

rsity of Glasgow

Copyright © 2005 Unive

Jobs and Tasks

* A job is a unit of work that 1s scheduled and executed by a system

— e.g. computation of a control-law, computation of an FFT on sensor data,
transmission of a data packet, retrieval of a file

* A task is a set of related jobs which jointly provide some function

— e.g. the set of jobs that constitute the “maintain constant altitude” task,
keeping an airplane flying at a constant altitude

Copyright © 2005 University of Glasgow

Processors and Resources

« A job executes — or 1s executed by the operating system — on a
processor and may depend on some resources

* A processor, P, 1s an active component
— E.g. A CPU, transmission link, disk, database server, etc.

— FEach processor has a speed attribute which determines the rate of progress a
job makes toward completion

* May represent instructions-per-second for a CPU, bandwidth of a network, etc.

— Two processors are of the same #ype if they are functionally identical and
can be used interchangeably

* A resource, R, 1s a passive entity upon which jobs may depend
— E.g. memory, sequence numbers, mutexes, database locks, etc.
— Resources have different fypes and sizes, but do not have a speed attribute
— Resources are usually reusable, and are not consumed by use

Copyright © 2005 University of Glasgow

Use of Resources

e If the system contains p (“rho”) types of resource, this means:
— There are p different types of serially reusable resources

— There are one or more units of each type of resource, only one job can use
each unit at once (mutually exclusive access)

— A job must obtain a unit of a needed resource, use it, then release it

» A resource 1s plentiful if no job is ever prevented from executing
by the unavailability of units of the resource

— Jobs never block when attempting to obtain a unit of a plentiful resource

— We typically omit such resources from our discussion, since they don’ t
impact performance or correctness

Copyright © 2005 University of Glasgow

Execution Time

* A job J; will execute for time e,

— This 1s the amount of time required to complete the execution of J; when it
executes alone and has all the resources it needs

— Value of e; depends upon complexity of the job and speed of the processor
on which it is scheduled; may change for a variety of reasons:
» Conditional branches
» Cache memories and/or pipelines

» Compression (e.g. MPEG video frames)

— Execution times fall into an interval [e;, e,"]; assume that we know this
interval for every hard real-time job, but not necessarily the actual e,

» Terminology: (x, y] is an interval starting immediately after x, continuing up to
and including y

» Often, we can validate a system using e;" for each job; we assume
e;= e;” and 1gnore the interval lower bound

— Inefficient, but safe bound on execution time

Copyright © 2005 University of Glasgow

Release and Response Time

* Release time — the instant in time when a job becomes available
for execution

— May not be exact: Release time jitter so r; 1s in the mterval [r;, r;"]

— A job can be scheduled and executed at any time at, or after, its release
time, provided its data and control dependency conditions are met

* Response time — the length of time from the release time of the job
to the time instant when 1t completes

— Not the same as execution time, since may not execute continually

Response time

Job, J, .
— ~ » Time

l l

Release time, 7,

rsity of Glasgow

Copyright © 2005 Unive

Deadlines and Timing Constraints

 Completion time — the instant at which a job completes execution
* Relative deadline — the maximum allowable response time of a job

Absolute deadline — the instant of time by which a job is required
to be completed (often called simply the deadline)

— absolute deadline = release time + relative deadline

— Feasible interval for a job J; 1s the interval (7, d;]

Deadlines are examples of timing constraints

Relative deadline, D,

Response time

Job, J,

» Time

p- LA 4+

l

l
I , Completion time
Release time, 7,

Absolute deadline, d,

rsity of Glasgow

Copyright © 2005 Unive

Example

* A system to monitor and control a heating furnace
* The system takes 20ms to 1nitialize when turned on

« After initialization, every 100 ms, the system:
— Samples and reads the temperature sensor

— Computes the control-law for the furnace to process temperature readings,
determine the correct flow rates of fuel, air and coolant

— Adjusts flow rates to match computed values
» The periodic computations can be stated in terms of release times
of the jobs computing the control-law: J,, J,, ..., J,, ...
— The release time of J 1s 20 + (k x 100) ms

L s e Time (ms)
0 20 120 220 220 320

I I I I

Jy J| J, J; Release Time

rsity of Glasgow

Copyright © 2005 Unive

Example

e Suppose each job must complete before the release of the next job:

— J. s relative deadline is 100 ms
— J, s absolute deadline is 20 + ((k + 1) x 100) ms

« Alternatively, each control-law computation may be required to
finish sooner — 1.e. the relative deadline 1s smaller than the time

between jobs, allowing some slack time for other jobs

Absolute deadline
for J, = 220ms

Relative deadline = 100ms
\l(_[\/ Slack time

o L s e Time (ms)
0 20 120 220 220 320

I I I I

Jy J| J, J; Release Time

rsity of Glasgow

Copyright © 2005 Unive

Hard vs. Soft Real-Time Systems

» Tardiness —how late a job completes relative to its deadline

lateness = completion time — absolute deadline
tardiness = max(0, lateness)

» [fajob must never miss its deadline, then the system 1s described
as hard real-time

— A timing constraint is hard if the failure to meet it 1s considered a fatal fault;
this definition is based upon the functional criticality of a job

— A timing constraint 1s hard if the usefulness of the results falls off abruptly
(or may even go negative) at the deadline

— A timing constraint is hard if the user requires validation (formal proof or
exhaustive simulation) that the system always meets its timing constraint

« If some deadlines can be missed occasionally, with acceptably low
probability, then the system 1is described as soft real-time

— This 1s a statistical constraint

Copyright © 2005 University of Glasgow

Hard vs. Soft Real-Time Systems

« Note: there may be no advantage in completing a job early

— It 1s often better to keep jitter (variation in timing) in the response times of a
stream of jobs small

 Timing constraints can be expressed in many ways:

— Deterministic

 e.g. the relative deadline of every control-law computation is 50 ms; the
response time of at most 1 out of 5 consecutive control-law computations
exceeds S50ms

— Probabilistic

 ¢.g. the probability of the response time exceeding 50 ms is less than 0.2
— In terms of some usefulness function

 e¢.g. the usefulness of every control-law computation is at least 0.8

[In practice, usually deterministic constraints, since easy to validate]

rsity of Glasgow

Copyright © 2005 Unive

Examples: Hard & Soft Real-Time Systems

Hard real-time: * Soft real-time:
— Flight control — Stock trading system
— Railway signalling — DVD player
— Anti-lock brakes — Mobile phone
— Etc. — Etc.

Can you think of more examples?

Is the distinction always clear cut?

Copyright © 2005 University of Glasgow

Parameters of a Workload

« As seen, each job J; 1s characterized by several parameters:
— temporal parameters and timing constraints
— functional parameters; intrinsic properties of the job
— resource parameters

— 1interconnection parameters; dependencies with other jobs

« The timing parameters of hard real-time jobs and tasks must be
known at all times — otherwise, we cannot ensure that the system
meets 1ts hard real-time constraints

— May also need to know about dependencies on other resources or jobs

— The number of hard real-time jobs in a system may change, provided the
characteristics of all are known, and the system 1s engineered to meet its
timing constraints in all modes

rsity of Glasgow

Copyright © 2005 Unive

Modelling Periodic Tasks

* A set of jobs that are executed repeatedly at regular time intervals
can be modelled as a periodic task

* Each periodic task 7} i1s a sequence of jobs J; |, J; 5, ..., J;,

The phase of a task T is the release time r; | of the first job J;, in the task. It
is denoted by ¢, (“phi”)

The period p; of a task T, is the minimum length of all time intervals
between release times of consecutive jobs

The execution time e, of a task T’ 1s the maximum execution time of all jobs
in the periodic task

The period and execution time of every periodic task in the system are
known with reasonable accuracy at all times

» The hyper-period of a set of periodic tasks is the least common
multiple of their periods: H =lem(p,) fori=1,2,...,n

— The time after which the pattern of job release/execution times starts to

repeat

rsity of Glasgow

Copyright © 2005 Unive

Modelling Periodic Tasks

» The ratio u; = e/p; 1s the utilization of task T;

— The fraction of time a periodic task with period p; and execution time e;
keeps a processor busy

» The total utilization of a system is the sum of the utilizations of all
tasks 1n a system: U =) u,
* We will usually assume the relative deadline for the jobs 1n a task

1s equal to the period of the task
— It can sometimes be shorter than the period, to allow slack time

= Many useful, real-world, systems fit this model; and it is easy to
reason about such periodic tasks

rsity of Glasgow

Copyright © 2005 Unive

Responding to External Events

* Many real-time systems are required to respond to external events

* The jobs resulting from such events are sporadic or aperiodic jobs
— A sporadic job has a hard deadlines
— An aperiodic job has either a soft deadline or no deadline
» The release time for sporadic or aperiodic jobs can be modelled as
a random variable with some probability distribution, 4(x)
— A(x) gives the probability that the release time of the job is not later than x

« Alternatively, 1f discussing a stream of similar sporadic/aperiodic
jobs, A(x) can be viewed as the probability distribution of their
inter-release times

[Note: sometimes the terms arrival time (or inter-arrival time) are used instead of
release time, due to their common use in queuing theory]

rsity of Glasgow

Copyright © 2005 Unive

Modelling Sporadic and Aperiodic Tasks

* A set of jobs that execute at irregular time intervals comprise a
sporadic or aperiodic task
— FEach sporadic/aperiodic task is a stream of sporadic/aperiodic jobs
« The inter-arrival times between consecutive jobs 1n such a task
may vary widely according to probability distribution A(x) and can
be arbitrarily small

« Similarly, the execution times of jobs are 1dentically distributed
random variables with some probability distribution B(x)

=> Sporadic and aperiodic tasks occur in some real-time systems, and
greatly complicate modelling and reasoning

rsity of Glasgow

Copyright © 2005 Unive

Precedence Constraints and Dependencies

» The jobs 1n a task, whether periodic, aperiodic or sporadic, may be
constrained to execute 1n a particular order
— This 1s known as a precedence constraint

— A job J.1s a predecessor of another job J, (and J, a successor of J,) if J,,
cannot begin execution until the execution of J; completes

* Denote this by saying J; < J,
— J; 18 an immediate predecessor of J 1f J; <J, and there 1s no other job J;
such that J; <J, <J,

— J;and J, are independent when neither J. <J,_nor J, <J,

« A job with a precedence constraint becomes ready for execution
once when its release time has passed and when all predecessors

have completed

Task Graphs

» (Can represent the precedence constraints among jobs in a set J using a directed
graph G = (J, <); each vertex represents a job represented; a directed edge goes
from J; to J, 1f J; 1s an immediate predecessor of J,

Independent Periodic jobs

(0,7] (2,9] (4,11] (6,13] (8,15] =2, p=2, D=7
o) o) o) O O
Feasible
intervals (2,3] (5.8] (8,11] (11,14] (14,171 periodic jobs, dependent
O O O © on immediate predecessor
=2, p=3, D=3
(0.5] (4.8] (5,20] Conditional block
0—0
join
Jobs with
(@) complex
dependencies

e
2/3 OR 1/2 Producer-Consumer

Copyright © 2005 University of Glasgow

rsity of Glasgow

Copyright © 2005 Unive

Task Graphs: Dependencies & Constraints

 Normally a job must wait for the completion of all immediate
predecessors; an AND constraint
— Unfilled circle in the task graph

* An OR constraint indicates that a job may begin after its release
time if only some of the immediate predecessors have completed

— Unfilled squares in the task graph
» Represent conditional branches and joins by filled in circles
* Represent a pair of producer/consumer jobs with a dotted edge

« Similar 1ssues also apply to resources and resource dependencies
— [Neither shown in this example]

Copyright © 2005 University of Glasgow

Functional Parameters

» Jobs may have priority, and in some cases may be interrupted by a
higher priority job
— A job 1s preemptable if its execution can be interrupted in this manner

— A job is non-preemptable if 1t must run to completion once started

* Many preemptable jobs have periods during which they cannot be preempted;
for example when accessing certain resources

— The ability to preempt a job (or not) impacts the scheduling algorithm

— The context switch time 1s the time taken to switch between jobs

* Forms an overhead that must be accounted for when scheduling jobs

e Response to missing a deadline can vary

— Some jobs have optional parts, that can be omitted to save time (at the
expense of a poorer quality result)

— Usefulness of late results varies; some applications tolerate some delay,
others do not

Copyright © 2005 University of Glasgow

Scheduling

« Jobs are scheduled and allocated resources according to a chosen
set of scheduling algorithms and resource access-control
protocols; a scheduler implements these algorithms

» A scheduler specifically assigns jobs to processors

e A schedule 1s an assignment of all jobs in the system on the
available processors.

* A valid schedule satisfies the following conditions:

Every processor 1s assigned to at most one job at any time
Every job is assigned at most one processor at any time
No job is scheduled before its release time

The total amount of processor time assigned to every job is equal to its
maximum or actual execution time

All the precedence and resource usage constraints are satisfied

rsity of Glasgow

Copyright © 2005 Unive

Scheduling

» A valid schedule is also a feasible schedule 1f every job meets its
timing constraints.
— Miss rate 1s the percentage of jobs that are executed but completed too late

— Loss rate 1s the percentage of jobs that are not executed at all

* A hard real time scheduling algorithm 1s optimal if the algorithm
always produces a feasible schedule 1f the given set of jobs has
feasible schedules.

Copyright © 2005 University of Glasgow

Summary

e Outline of terminology and a reference model:
— Jobs and tasks
— Processors and resources

— Time and timing constraints
* Hard real-time

* Soft real-time
— Periodic, aperiodic and sporadic tasks
— Precedence constraints and dependencies
— Scheduling

Corresponds to the material in chapters 2 and 3 of Liu’ s book...

...tomorrow we move onto scheduling and the material in chapter 4

