
Network Working Group S. McQuistin
Internet-Draft V. Band
Intended status: Experimental D. Jacob
Expires: 10 September 2020 C. S. Perkins
 University of Glasgow
 9 March 2020

 Describing Protocol Data Units with Augmented Packet Header Diagrams
 draft-mcquistin-augmented-ascii-diagrams-03

Abstract

 This document describes a machine-readable format for specifying the
 syntax of protocol data units within a protocol specification. This
 format is comprised of a consistently formatted packet header
 diagram, followed by structured explanatory text. It is designed to
 maintain human readability while enabling support for automated
 parser generation from the specification document. This document is
 itself an example of how the format can be used.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 September 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

McQuistin, et al. Expires 10 September 2020 [Page 1]

Internet-Draft Augmented Packet Diagrams March 2020

 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Background . 4
 2.1. Limitations of Current Packet Format Diagrams 4
 2.2. Formal languages in standards documents 7
 3. Design Principles . 7
 4. Augmented Packet Header Diagrams 9
 4.1. PDUs with Fixed and Variable-Width Fields 10
 4.2. PDUs That Cross-Reference Previously Defined Fields . . . 12
 4.3. PDUs with Non-Contiguous Fields 15
 4.4. Importing PDU Definitions from Other Documents 15
 5. Open Issues . 16
 6. IANA Considerations . 16
 7. Security Considerations 16
 8. Acknowledgements . 17
 9. Informative References 17
 Appendix A. ABNF specification 18
 A.1. Constraint Expressions 18
 A.2. Augmented packet diagrams 19
 Appendix B. Source code repository 19
 Authors’ Addresses . 19

1. Introduction

 Packet header diagrams have become a widely used format for
 describing the syntax of binary protocols. In otherwise largely
 textual documents, they allow for the visualisation of packet
 formats, reducing human error, and aiding in the implementation of
 parsers for the protocols that they specify.

 Figure 1 gives an example of how packet header diagrams are used to
 define binary protocol formats. The format has an obvious structure:
 the diagram clearly delineates each field, showing its width and its
 position within the header. This type of diagram is designed for
 human readers, but is consistent enough that it should be possible to
 develop a tool that generates a parser for the packet format from the
 diagram.

McQuistin, et al. Expires 10 September 2020 [Page 2]

Internet-Draft Augmented Packet Diagrams March 2020

 : 0 1 2 3
 : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 : +-+
 : | Source Port | Destination Port |
 : +-+
 : | Sequence Number |
 : +-+
 : | Acknowledgment Number |
 : +-+
 : | Data | |U|A|P|R|S|F| |
 : | Offset| Reserved |R|C|S|S|Y|I| Window |
 : | | |G|K|H|T|N|N| |
 : +-+
 : | Checksum | Urgent Pointer |
 : +-+
 : | Options | Padding |
 : +-+
 : | data |
 : +-+

 Figure 1: TCP’s header format (from [RFC793])

 Unfortunately, the format of such packet diagrams varies both within
 and between documents. This variation makes it difficult to build
 tools to generate parsers from the specifications. Better tooling
 could be developed if protocol specifications adopted a consistent
 format for their packet descriptions. Indeed, this underpins the
 format described by this draft: we want to retain the benefits that
 packet header diagrams provide, while identifying the benefits of
 adopting a consistent format.

 This document describes a consistent packet header diagram format and
 accompanying structured text constructs that allow for the parsing
 process of protocol headers to be fully specified. This provides
 support for the automatic generation of parser code. Broad design
 principles, that seek to maintain the primacy of human readability
 and flexibility in writing, are described, before the format itself
 is given.

 This document is itself an example of the approach that it describes,
 with the packet header diagrams and structured text format described
 by example. Examples that do not form part of the protocol
 description language are marked by a colon at the beginning of each
 line; this prevents them from being parsed by the accompanying
 tooling.

 This draft describes early work. As consensus builds around the
 particular syntax of the format described, both a formal ABNF

McQuistin, et al. Expires 10 September 2020 [Page 3]

Internet-Draft Augmented Packet Diagrams March 2020

 specification (Appendix A) and code (Appendix B) that parses it (and,
 as described above, this document) will be provided.

2. Background

 This section begins by considering how packet header diagrams are
 used in existing documents. This exposes the limitations that the
 current usage has in terms of machine-readability, guiding the design
 of the format that this document proposes.

 While this document focuses on the machine-readability of packet
 format diagrams, this section also discusses the use of other
 structured or formal languages within IETF documents. Considering
 how and why these languages are used provides an instructive contrast
 to the relatively incremental approach proposed here.

2.1. Limitations of Current Packet Format Diagrams

 : The RESET_STREAM frame is as follows:
 :
 : 0 1 2 3
 : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 : +-+
 : | Stream ID (i) ...
 : +-+
 : | Application Error Code (16) |
 : +-+
 : | Final Size (i) ...
 : +-+
 :
 : RESET_STREAM frames contain the following fields:
 :
 : Stream ID: A variable-length integer encoding of the Stream ID
 : of the stream being terminated.
 :
 : Application Protocol Error Code: A 16-bit application protocol
 : error code (see Section 20.1) which indicates why the stream
 : is being closed.
 :
 : Final Size: A variable-length integer indicating the final size
 : of the stream by the RESET_STREAM sender, in unit of bytes.

 Figure 2: QUIC’s RESET_STREAM frame format (from [QUIC-TRANSPORT])

 Packet header diagrams are frequently used in IETF standards to
 describe the format of binary protocols. While there is no standard
 for how these diagrams should be formatted, they have a broadly
 similar structure, where the layout of a protocol data unit (PDU) or

McQuistin, et al. Expires 10 September 2020 [Page 4]

Internet-Draft Augmented Packet Diagrams March 2020

 structure is shown in diagrammatic form, followed by a description
 list of the fields that it contains. An example of this format,
 taken from the QUIC specification, is given in Figure 2.

 These packet header diagrams, and the accompanying descriptions, are
 formatted for human readers rather than for automated processing. As
 a result, while there is rough consistency in how packet header
 diagrams are formatted, there are a number of limitations that make
 them difficult to work with programmatically:

 Inconsistent syntax: There are two classes of consistency that are
 needed to support automated processing of specifications: internal
 consistency within a diagram or document, and external consistency
 across all documents.

 Figure 2 gives an example of internal inconsistency. Here, the
 packet diagram shows a field labelled "Application Error Code",
 while the accompanying description lists the field as "Application
 Protocol Error Code". The use of an abbreviated name is suitable
 for human readers, but makes parsing the structure difficult for
 machines. Figure 3 gives a further example, where the description
 includes an "Option-Code" field that does not appear in the packet
 diagram; and where the description states that each field is 16
 bits in length, but the diagram shows the OPTION_RELAY_PORT as 13
 bits, and Option-Len as 19 bits. Another example is [RFC6958],
 where the packet format diagram showing the structure of the
 Burst/Gap Loss Metrics Report Block shows the Number of Bursts
 field as being 12 bits wide but the corresponding text describes
 it as 16 bits.

 Comparing Figure 2 with Figure 3 exposes external inconsistency
 across documents. While the packet format diagrams are broadly
 similar, the surrounding text is formatted differently. If
 machine parsing is to be made possible, then this text must be
 structured consistently.

 Ambiguous constraints: The constraints that are enforced on a
 particular field are often described ambiguously, or in a way that
 cannot be parsed easily. In Figure 3, each of the three fields in
 the structure is constrained. The first two fields ("Option-Code"
 and "Option-Len") are to be set to constant values (note the
 inconsistency in how these constraints are expressed in the
 description). However, the third field ("Downstream Source Port")
 can take a value from a constrained set. This constraint is
 expressed in prose that cannot readily by understood by machine.

 Poor linking between sub-structures: Protocol data units and other
 structures are often comprised of sub-structures that are defined

McQuistin, et al. Expires 10 September 2020 [Page 5]

Internet-Draft Augmented Packet Diagrams March 2020

 elsewhere, either in the same document, or within another
 document. Chaining these structures together is essential for
 machine parsing: the parsing process for a protocol data unit is
 only fully expressed if all elements can be parsed.

 Figure 2 highlights the difficulty that machine parsers have in
 chaining structures together. Two fields ("Stream ID" and "Final
 Size") are described as being encoded as variable-length integers;
 this is a structure described elsewhere in the same document.
 Structured text is required both alongside the definition of the
 containing structure and with the definition of the sub-structure,
 to allow a parser to link the two together.

 Lack of extension and evolution syntax: Protocols are often
 specified across multiple documents, either because the protocol
 explicitly includes extension points (e.g., profiles and payload
 format specifications in RTP [RFC3550]) or because definition of a
 protocol data unit has changed and evolved over time. As a
 result, it is essential that syntax be provided to allow for a
 complete definition of a protocol’s parsing process to be
 constructed across multiple documents.

 : The format of the "Relay Source Port Option" is shown below:
 :
 : 0 1 2 3
 : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 : +-+
 : | OPTION_RELAY_PORT | Option-Len |
 : +-+
 : | Downstream Source Port |
 : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 :
 : Where:
 :
 : Option-Code: OPTION_RELAY_PORT. 16-bit value, 135.
 :
 : Option-Len: 16-bit value to be set to 2.
 :
 : Downstream Source Port: 16-bit value. To be set by the IPv6
 : relay either to the downstream relay agent’s UDP source port
 : used for the UDP packet, or to zero if only the local relay
 : agent uses the non-DHCP UDP port (not 547).

 Figure 3: DHCPv6’s Relay Source Port Option (from [RFC8357])

McQuistin, et al. Expires 10 September 2020 [Page 6]

Internet-Draft Augmented Packet Diagrams March 2020

2.2. Formal languages in standards documents

 A small proportion of IETF standards documents contain structured and
 formal languages, including ABNF [RFC5234], ASN.1 [ASN1], C, CBOR
 [RFC7049], JSON, the TLS presentation language [RFC8446], YANG models
 [RFC7950], and XML. While this broad range of languages may be
 problematic for the development of tooling to parse specifications,
 these, and other, languages serve a range of different use cases.
 ABNF, for example, is typically used to specify text protocols, while
 ASN.1 is used to specify data structure serialisation. This document
 specifies a structured language for specifying the parsing of binary
 protocol data units.

3. Design Principles

 The use of structures that are designed to support machine
 readability might potentially interfere with the existing ways in
 which protocol specifications are used and authored. To the extent
 that these existing uses are more important than machine readability,
 such interference must be minimised.

 In this section, the broad design principles that underpin the format
 described by this document are given. However, these principles
 apply more generally to any approach that introduces structured and
 formal languages into standards documents.

 It should be noted that these are design principles: they expose the
 trade-offs that are inherent within any given approach. Violating
 these principles is sometimes necessary and beneficial, and this
 document sets out the potential consequences of doing so.

 The central tenet that underpins these design principles is a
 recognition that the standardisation process is not broken, and so
 does not need to be fixed. Failure to recognise this will likely
 lead to approaches that are incompatible with the standards process,
 or that will see limited adoption. However, the standards process
 can be improved with appropriate approaches, as guided by the
 following broad design principles:

 Most readers are human: Primarily, standards documents should be
 written for people, who require text and diagrams that they can
 understand. Structures that cannot be easily parsed by people
 should be avoided, and if included, should be clearly delineated
 from human-readable content.

 Any approach that shifts this balance -- that is, that primarily
 targets machine readers -- is likely to be disruptive to the

McQuistin, et al. Expires 10 September 2020 [Page 7]

Internet-Draft Augmented Packet Diagrams March 2020

 standardisation process, which relies upon discussion centered
 around documents written in prose.

 Writing tools are diverse: Standards document writing is a
 distributed process that involves a diverse set of tools and
 workflows. The introduction of machine-readable structures into
 specifications should not require that specific tools are used to
 produce standards documents, to ensure that disruption to existing
 workflows is minimised. This does not preclude the development of
 optional, supplementary tools that aid in the authoring machine-
 readable structures.

 The immediate impact of requiring specific tooling is that
 adoption is likely to be limited. A long-term impact might be
 that authors whose workflows are incompatible might be alienated
 from the process.

 Canonical specifications: As far as possible, machine-readable
 structures should not replicate the human readable specification
 of the protocol within the same document. Machine-readable
 structures should form part of a canonical specification of the
 protocol. Adding supplementary machine-readable structures, in
 parallel to the existing human readable text, is undesirable
 because it creates the potential for inconsistency.

 As an example, program code that describes how a protocol data
 unit can be parsed might be provided as an appendix within a
 standards document. This code would provide a specification of
 the protocol that is separate to the prose description in the main
 body of the document. This has the undesirable effect of
 introducing the potential for the program code to specify
 behaviour that the prose-based specification does not, and vice-
 versa.

 Expressiveness: Any approach should be expressive enough to capture
 the syntax and parsing process for the majority of binary
 protocols. If a given language is not sufficiently expressive,
 then adoption is likely to be limited. At the limits of what can
 be expressed by the language, authors are likely to revert to
 defining the protocol in prose: this undermines the broad goal of
 using structured and formal languages. Equally, though,
 understandable specifications and ease of use are critical for
 adoption. A tool that is simple to use and addresses the most
 common use cases might be preferred to a complex tool that
 addresses all use cases.

 It may be desirable to restrict expressiveness, however, to
 guarantee intrinsic safety, security, and computability properties

McQuistin, et al. Expires 10 September 2020 [Page 8]

Internet-Draft Augmented Packet Diagrams March 2020

 of both the generated parser code for the protocol, and the parser
 of the description language itself. In much the same way as the
 language-theoretic security ([LANGSEC]) community advocates for
 programming language design to be informed by the desired
 properties of the parsers for those languages, protocol designers
 should be aware of the implications of their design choices. The
 expressiveness of the protocol description languages that they use
 to define their protocols can force such awareness.

 Broadly, those languages that have grammars which are more
 expressive tend to have parsers that are more complex and less
 safe. As a result, while considering the other goals described in
 this document, protocol description languages should attempt to be
 minimally expressive, and either restrict protocol designs to
 those for which safe and secure parsers can be generated, or as a
 minimum, ensure that protocol designers are aware of the
 boundaries their designs cross, in terms of computability and
 decidability [SASSAMAN].

 Minimise required change: Any approach should require as few changes
 as possible to the way that documents are formatted, authored, and
 published. Forcing adoption of a particular structured or formal
 language is incompatible with the IETF’s standardisation process:
 there are very few components of standards documents that are non-
 optional.

4. Augmented Packet Header Diagrams

 The design principles described in Section 3 can largely be met by
 the existing uses of packet header diagrams. These diagrams aid
 human readability, do not require new or specialised tools to write,
 do not split the specification into multiple parts, can express most
 binary protocol features, and require no changes to existing
 publication processes.

 However, as discussed in Section 2.1 there are limitations to how
 packet header diagrams are used that must be addressed if they are to
 be parsed by machine. In this section, an augmented packet header
 diagram format is described.

 The concept is first illustrated by example. This is appropriate,
 given the visual nature of the language. In future drafts, these
 examples will be parsable using provided tools, and a formal
 specification of the augmented packet diagrams will be given in
 Appendix A.

McQuistin, et al. Expires 10 September 2020 [Page 9]

Internet-Draft Augmented Packet Diagrams March 2020

4.1. PDUs with Fixed and Variable-Width Fields

 The simplest PDU is one that contains only a set of fixed-width
 fields in a known order, with no optional fields or variation in the
 packet format.

 Some packet formats include variable-width fields, where the size of
 a field is either derived from the value of some previous field, or
 is unspecified and inferred from the total size of the packet and the
 size of the other fields.

 To ensure that there is no ambiguity, a PDU description can contain
 only one field whose length is unspecified. The length of a single
 field, where all other fields are of known (but perhaps variable)
 length, can be inferred from the total size of the containing PDU.

 A PDU description is introduced by the exact phrase "A/An _______ is
 formatted as follows:" at the end of a paragraph. This is followed
 by the PDU description itself, as a packet diagram within an
 <artwork> element in the XML representation, starting with a header
 line to show the bit width of the diagram. The description of the
 fields follows the diagram, as an XML <dl> list, after a paragraph
 containing the text "where:".

 PDU names must be unique, both within a document, and across all
 documents that are linked together (i.e., using the structured
 language defined in Section 4.4).

 Each field of the description starts with a <dt> tag comprising the
 field name and an optional short name in parenthesis. These are
 followed by a colon, the field length, an optional presence
 expression (described in Section 4.2), and a terminating period. The
 following <dd> tag contains a prose description of the field. Field
 names cannot be the same as a previously defined PDU name, and must
 be unique within a given structure definition.

 For example, this can be illustrated using the IPv4 Header Format
 [RFC791]. An IPv4 Header is formatted as follows:

McQuistin, et al. Expires 10 September 2020 [Page 10]

Internet-Draft Augmented Packet Diagrams March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL | DSCP |ECN| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options ...
 +-+
 | :
 : Payload :
 : |
 +-+

 where:

 Version (V): 4 bits. This is a fixed-width field, whose full label
 is shown in the diagram. The field’s width -- 4 bits -- is given
 in the label of the description list, separated from the field’s
 label by a colon.

 Internet Header Length (IHL): 4 bits. This is a shorter field, whose
 full label is too large to be shown in the diagram. A short label
 (IHL) is used in the diagram, and this short label is provided, in
 brackets, after the full label in the description list.

 Differentiated Services Code Point (DSCP): 6 bits. This is a fixed-
 width field, as previously discussed.

 Explicit Congestion Notification (ECN): 2 bits. This is a fixed-
 width field, as previously discussed.

 Total Length (TL): 2 bytes. This is a fixed-width field, as
 previously discussed. Where fields are an integral number of
 bytes in size, the field length can be given in bytes rather than
 in bits.

 Identification: 2 bytes. This is a fixed-width field, as previously
 discussed.

 Flags: 3 bits. This is a fixed-width field, as previously discussed.

McQuistin, et al. Expires 10 September 2020 [Page 11]

Internet-Draft Augmented Packet Diagrams March 2020

 Fragment Offset: 13 bits. This is a fixed-width field, as previously
 discussed.

 Time to Live (TTL): 1 byte. This is a fixed-width field, as
 previously discussed.

 Protocol: 1 byte. This is a fixed-width field, as previously
 discussed.

 Header Checksum: 2 bytes. This is a fixed-width field, as previously
 discussed.

 Source Address: 32 bits. This is a fixed-width field, as previously
 discussed.

 Destination Address: 32 bits. This is a fixed-width field, as
 previously discussed.

 Options: (IHL-5)*32 bits. This is a variable-length field, whose
 length is defined by the value of the field with short label IHL
 (Internet Header Length). Constraint expressions can be used in
 place of constant values: the grammar for the expression language
 is defined in Appendix A.1. Constraints can include a previously
 defined field’s short or full label, where one has been defined.
 Short variable-length fields are indicated by "..." instead of a
 pipe at the end of the row.

 Payload: TL - ((IHL*32)/8) bytes. This is a multi-row variable-
 length field, constrained by the values of fields TL and IHL.
 Instead of the "..." notation, ":" is used to indicate that the
 field is variable-length. The use of ":" instead of "..."
 indicates the field is likely to be a longer, multi-row field.
 However, semantically, there is no difference: these different
 notations are for the benefit of human readers.

4.2. PDUs That Cross-Reference Previously Defined Fields

 Binary formats often reference sub-structures that have been defined
 earlier in the specification. For example, in RTP [RFC3550], the
 Contributing Source Identifiers in an RTP Data Packet are defined as
 comprising a list of Source Identifier elements. A Source Identifier
 is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SSRC |
 +-+

McQuistin, et al. Expires 10 September 2020 [Page 12]

Internet-Draft Augmented Packet Diagrams March 2020

 where:

 SSRC: 32 bits. This is a fixed-width field, as described previously.

 The following example shows how a Source Identifier can be referenced
 in the description of an RTP Data Packet. It also shows how the
 presence of some fields in a format may be dependent on the values of
 an earlier field.

 An RTP Data Packet is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | V |P|X| CC |M| PT | Sequence Number |
 +-+
 | Timestamp |
 +-+
 | Synchronization Source identifier |
 +-+
 | [Contributing Source identifiers] |
 +-+
 | Header Extension |
 +-+
 | Payload :
 : :
 : |
 +-+
 | Padding | Padding Count |
 +-+

 where:

 Version (V): 2 bits. This is a fixed-width field, as described
 previously.

 Padding (P): 1 bit. This is a fixed-width field, as described
 previously.

 Extension (X): 1 bit. This is a fixed-width field, as described
 previously.

 CSRC count (CC): 4 bits. This is a fixed-width field, as described
 previously.

 Marker (M): 1 bit. This is a fixed-width field, as described
 previously.

McQuistin, et al. Expires 10 September 2020 [Page 13]

Internet-Draft Augmented Packet Diagrams March 2020

 Payload Type (PT): 7 bits. This is a fixed-width field, as described
 previously.

 Sequence Number (PT): 16 bits. This is a fixed-width field, as
 described previously.

 Timestamp (PT): 32 bits. This is a fixed-width field, as described
 previously.

 Synchronization Source identifier: 1 * Source Identifier. This is a
 field whose structure is a previously defined PDU format (Source
 Identifier). To indicate this, the width of the field is
 expressed in terms of cross-referenced structure. When used in
 constraint expressions, PDU names refer to the length of that PDU
 structure.

 Contributing Source identifiers: CC * Source Identifier. Where a
 field is comprised of a sequence of previously defined structures,
 square brackets can be used to indicate this in the diagram. The
 length of the sequence can be defined using the constraint
 expression grammar as described earlier.

 In this example, both a PDU name (Source Identifier) and a field
 name (CC) are used in the constraint expression. The PDU name
 refers to the length of the PDU, while the field name refers to
 the value of the field. This is possible because field names
 cannot be the same as previously defined PDU names.

 Header Extension: 32 bits; present only when X == 1. This is a field
 whose presence is predicated on an expression given using the
 constraint expression grammar described earlier. Optional fields
 can be of any previously defined format (e.g., fixed- or variable-
 width). Optional fields are indicated by the presence of ";
 present only when [expr]." at the end of the definition term
 (i.e., the text contained within the <dt> tag).

 [Note that this example deviates from the format as described in
 [RFC3550]. As specified in that document, the Header Extension
 would be a cross-referenced structure. This is not shown here for
 brevity.]

 Payload. The length of the Payload is not specified, and hence needs
 to be inferred from the total length of the packet and the lengths
 of the known fields. There can only be one field of unspecified
 size in a PDU.

 Padding: Padding Count bytes; present only when (P == 1) and
 (Padding Count > 0).

McQuistin, et al. Expires 10 September 2020 [Page 14]

Internet-Draft Augmented Packet Diagrams March 2020

 This is a variable size field, with size dependent on a later
 field in the packet. Fields can only depend on the value of a
 later field if they follow a field with unspecified size.

 Padding Count: 1 byte; present only when P == 1. This is a fixed-
 width field, as previously discussed.

4.3. PDUs with Non-Contiguous Fields

 In some binary formats, fields are striped across multiple non-
 contiguous bits. This is often to allow for backwards compatibility
 with previous definitions of the same fields in earlier documents:
 striping in this way allows for careful use of the possible range of
 values.

 This format is illustrated using the STUN Message Type
 [draft-ietf-tram-stunbis-21]. A STUN Message Type is formatted as
 follows:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |M|M|M|M|M|C|M|M|M|C|M|M|M|M|
 |B|A|9|8|7|1|6|5|4|0|3|2|1|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 where:

 Method (M): 12 bits. This field is comprised of multiple sub-fields
 (M0 through MB) as shown in the diagram. That these sub-fields
 should be concatenated, after parsing, into a single field is
 indicated by their being labelled using the ’M’ short field name
 followed by a single hexadecimal digit, with the least significant
 bit labelled with 0, and subsequent bits labelled in sequence.

 Class (C): 2 bits. This field follows the same format as M described
 above.

4.4. Importing PDU Definitions from Other Documents

 Protocols are often specified across multiple documents, either
 because the specification of a protocol’s data units has changed over
 time, or because of explicit extension points contained in the
 protocol’s original specification. To allow a document to make use
 of a previous PDU definition, it is possible to import PDU
 definitions (written in the format described in this document) from
 other documents.

McQuistin, et al. Expires 10 September 2020 [Page 15]

Internet-Draft Augmented Packet Diagrams March 2020

 A PDU definition is imported using the exact phrase "A/An ________ is
 formatted as described in <document identifier>". The document
 identifier must refer, unambiguously, to an existing document. An
 Internet-Draft is identified by its name. RFCs are identified by
 "RFC" followed by their number.

5. Open Issues

 * Need a simple syntax for defining a list of identical objects, and
 a way of referring to the size of the enclosing packet. The
 format cannot currently represent RFC 6716 section 3.2.3, and
 should be able to (the underlying type system can do so).

 * Need some discussion about the checks that the tooling might
 perform, and the implications of those checks. For example, the
 tooling checks for consistency between the diagram and the
 description list of fields, ensuring that fields match by name and
 width. -01 of this draft had a field that mismatched because of
 case: is this something that the tooling should identify? More
 broadly, what is the trade-off between the rigour that the tooling
 can enforce, and the flexibility desired/needed by authors?

 * Need to describe the rules governing the import of PDU definitions
 from other documents.

6. IANA Considerations

 This document contains no actions for IANA.

7. Security Considerations

 Poorly implemented parsers are a frequent source of security
 vulnerabilities in protocol implementations. Structuring the
 description of a protocol data unit so that a parser can be
 automatically derived from the specification can reduce the
 likelihood of vulnerable implementations.

 As described in Section 3, the expressiveness of a protocol
 description language has implications for the safety, security, and
 computability properties of the parser for the protocol description
 language itself, and on the generated parser code for the protocols
 described using it. The language-theoretic security ([LANGSEC])
 community explores the security implications of programming language
 design; the principles developed in that community should guide the
 development of protocol description languages.

McQuistin, et al. Expires 10 September 2020 [Page 16]

Internet-Draft Augmented Packet Diagrams March 2020

8. Acknowledgements

 The authors would like to thank David Southgate for preparing a
 prototype implementation of some of the ideas described here.

 The authors would like to thank Marc Petit-Huguenin for feedback on
 the draft.

 This work has received funding from the UK Engineering and Physical
 Sciences Research Council under grant EP/R04144X/1.

9. Informative References

 [RFC8357] Deering, S. and R. Hinden, "Generalized UDP Source Port
 for DHCP Relay", RFC 8357, March 2018,
 <https://www.rfc-editor.org/info/rfc8357>.

 [QUIC-TRANSPORT]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-20, 23 April 2019,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 transport-20.txt>.

 [RFC6958] Clark, A., Zhang, S., Zhao, J., and Q. Wu, "RTP Control
 Protocol (RTCP) Extended Report (XR) Block for Burst/Gap
 Loss Metric Reporting", RFC 6958, May 2013,
 <https://www.rfc-editor.org/info/rfc6958>.

 [RFC7950] Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 RFC 7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [ASN1] ITU-T, "ITU-T Recommendation X.680, X.681, X.682, and
 X.683", ITU-T Recommendation X.680, X.681, X.682, and
 X.683.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013,
 <https://www.rfc-editor.org/info/rfc7049>.

McQuistin, et al. Expires 10 September 2020 [Page 17]

Internet-Draft Augmented Packet Diagrams March 2020

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", RFC 3550, July 2003,
 <https://www.rfc-editor.org/info/rfc3550>.

 [draft-ietf-tram-stunbis-21]
 Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
 D., Mahy, R., and P. Matthews, "Session Traversal
 Utilities for NAT (STUN)", Work in Progress, Internet-
 Draft, draft-ietf-tram-stunbis-21, 21 March 2019,
 <http://www.ietf.org/internet-drafts/draft-ietf-tram-
 stunbis-21.txt>.

 [RFC791] Postel, J., "Internet Protocol", RFC 791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC793] Postel, J., "Transmission Control Protocol", RFC 793,
 September 1981, <https://www.rfc-editor.org/info/rfc793>.

 [LANGSEC] LANGSEC, "LANGSEC: Language-theoretic Security",
 <http://langsec.org>.

 [SASSAMAN] Sassaman, L., Patterson, M. L., Bratus, S., and A.
 Shubina, "The Halting Problems of Network Stack
 Insecurity", ;login: -- December 2011, Volume 36, Number
 6, <https://www.usenix.org/publications/login/december-
 2011-volume-36-number-6/halting-problems-network-stack-
 insecurity>.

Appendix A. ABNF specification

A.1. Constraint Expressions

McQuistin, et al. Expires 10 September 2020 [Page 18]

Internet-Draft Augmented Packet Diagrams March 2020

 cond-expr = eq-expr "?" cond-expr ":" eq-expr
 eq-expr = bool-expr eq-op bool-expr
 bool-expr = ord-expr bool-op ord-expr
 ord-expr = add-expr ord-op add-expr

 add-expr = mul-expr add-op mul-expr
 mul-expr = expr mul-op expr
 expr = *DIGIT / field-name /
 field-name-ws / "(" expr ")"

 field-name = *ALPHA
 field-name-ws = *(field-name " ")

 mul-op = "*" / "/" / "%"
 add-op = "+" / "-"
 ord-op = "<=" / "<" / ">=" / ">"
 bool-op = "&&" / "||" / "!"
 eq-op = "==" / "!="

A.2. Augmented packet diagrams

 Future revisions of this draft will include an ABNF specification for
 the augmented packet diagram format described in Section 4. Such a
 specification is omitted from this draft given that the format is
 likely to change as its syntax is developed. Given the visual nature
 of the format, it is more appropriate for discussion to focus on the
 examples given in Section 4.

Appendix B. Source code repository

 The source for this draft is available from https://github.com/
 glasgow-ipl/draft-mcquistin-augmented-ascii-diagrams.

 The source code for tooling that can be used to parse this document
 is available from https://github.com/glasgow-ipl/ips-protodesc-code.

Authors’ Addresses

 Stephen McQuistin
 University of Glasgow
 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 Email: sm@smcquistin.uk

McQuistin, et al. Expires 10 September 2020 [Page 19]

Internet-Draft Augmented Packet Diagrams March 2020

 Vivian Band
 University of Glasgow
 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 Email: vivianband0@gmail.com

 Dejice Jacob
 University of Glasgow
 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 Email: d.jacob.1@research.gla.ac.uk

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

McQuistin, et al. Expires 10 September 2020 [Page 20]

