
Peer-to-Peer Secure Updates for Heterogeneous
Edge Devices

Herry Herry∗, Emily Band†, Colin Perkins‡, and Jeremy Singer∗
School of Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom

∗{herry.herry, jeremy.singer}@glasgow.ac.uk, †2038561B@student.gla.ac.uk, ‡csp@csperkins.org

Abstract—We consider the problem of securely distributing
software updates to large scale clusters of heterogeneous edge
compute nodes. Such nodes are needed to support the Internet of
Things and low-latency edge compute scenarios, but are difficult
to manage and update because they exist at the edge of the
network behind NATs and firewalls that limit connectivity, or
because they are mobile and have intermittent network access.
We present a prototype secure update architecture for these
devices that uses the combination of peer-to-peer protocols and
automated NAT traversal techniques. This demonstrates that edge
devices can be managed in an environment subject to partial or
intermittent network connectivity, where there is not necessarily
direct access from a management node to the devices being
updated.

I. Introduction

Deployment of smart campuses and smart cities use low-
cost, low-power edge compute devices to build sensor and
control systems, and to provide smart edge compute nodes.
Such systems often start small, with a few tens of nodes, but
deployments can rapidly scale to many thousands of devices,
and future systems can be expected to be still larger scale. The
devices that comprise these systems can be in inaccessible
locations, be mobile, or be in private residences. Remote
administration is essential to ensure that security updates are
applied, and to install new applications and services.

Standard cluster management tools, such as Puppet [1], Chef
[2], and Ansible [3], have a track record of allowing ad-
ministrators to successfully manage large numbers of devices.
However, these tools rely on either direct push network access
from the central management systems to the devices being
managed, or on having the devices have access to a well-
connected central server from which they can pull updates.
Such cluster management tools work well for always-on nodes
in well-connected networks, such as data centres, but are
not suitable for more the distributed, mobile, ad-hoc, and
otherwise poorly-connected environments we consider.

Additionally, relying on a central management server to
provide updates, whether push from that server to edge nodes
or pulling updates from the server, introduces robustness
and scalability concerns. The central server is a single point
of failure, vulnerable to hardware and software failures and
malicious attacks, and will likely become a performance
bottleneck as the system grows. The use of replicated servers,
content distribution networks, and similar mechanisms can

address these concerns, but come with significant financial
and complexity costs.
In this paper, we consider an alternative to such centralised

systems, and explore whether peer-to-peer overlay protocols
can enable secure, scalable, and cost-effective system updates
for large-scale networks of heterogeneous edge devices. We
consider how to build an overlay in networks with limited
connectivity, such as those behind network address translator
(NAT) devices, restricted firewalls, or with intermittent con-
nections to the Internet, and how to use this to deploy updates
in a scaleable manner.
To support this, we have designed and built a prototype

decentralised management framework that distributes system
updates and management scripts via a peer-to-peer overlay.
This allows us to manage devices that do not have direct
network access such as nodes behind network address trans-
lators (NATs) or firewalls. Also, the nodes in local network
could share the same update files, saving the bandwidth to
the external network. Moreover, we may not need a dedicated
update server since every node can provide the updates for the
others. Our framework combines several key techniques:
1) STUN-based UDP hole punching to discover and open

NAT bindings;
2) a gossip protocol to deliver short messages, similar in

scope to Serf[4], to distribute update notifications; and
3) BitTorrent to securely distribute the software updates.

Our contribution is to demonstrate that clusters of edge devices
can be managed in an environment subject to partial or
intermittent network connectivity, and in the presence of NATs
and firewalls, where there is not necessarily direct access from
a management node to the devices being updated.
The remainder of this paper is organized as follows. We

begin, in Section II, but outlining the challenges inherent in
building a peer-to-peer update protocol that can operate in
today’s challenged network environment. We describe our pro-
posed system architecture in section III, and give an example
of its operation in in Section IV. Related work is discussed in
section V. Finally, section VI concludes and considers future
work.

II. Challenges in Peer-to-Peer Cluster Updates
The deployment and subsequent need to manage large-scale

clusters of heterogeneous edge devices forces us to consider
issues that do not occur in traditional data centre networks.
These devices lack a standard device hardware configuration;978-1-5386-3416-5/18/$31.00 © 2018 IEEE

tend to be relatively underpowered, and may not be able to
run heavy-weight management tools due to performance or
power constraints. In addition, they tend to have only limited
network access due to the presence of firewalls, NATs, or
intermittent connectivity, and so cannot be assumed to be
directly accessible by a management system.

The issue of limited network connectivity is a significant
challenge for the management and secure updating infrastruc-
ture. Traditional data centres are built around the assumption
that hosts being managed are either directly accessible to the
management system, or they can directly access the manage-
ment system, and that the network is generally reliable. This
is increasingly not be the case for the devices we consider.
There are several reasons for this:

1) devices will be installed in independently operated res-
idential or commercial networks at the edge of the
Internet, and so will be subject to the security policies
of those networks, and will be protected by the firewalls
enforcing those policies.

2) devices located in independently operated networks may
be in different addressing realms, and traffic may need to
pass through a NAT between the device being managed
and the management system.

3) devices may not always be connected to the Internet,
perhaps because they are mobile, power constrained, or
otherwise have limited access.

Traditional cluster management tools fail in these environ-
ments since they do not account for NAT devices and par-
tial connectivity, and frequently do not consider intermittent
connectivity. Management and updating tools need to evolve to
allow node management via indirect, peer-to-peer, connections
that traverse firewalls that prohibit direct connection to the
system being managed. They must also incorporate automatic
NAT traversal, building on protocols such as STUN and ICE
[5], [6] to allow NAT hole-punching and node access without
manual NAT configuration1.
Existing cluster management tools scale by assuming a

restricted, largely homogeneous, network environment, but this
is not scenario we envisage for sensor and control networks, or
edge computing. Such systems will increasingly be deployed
in the wild, at the edge of the network, where the network
performance and configuration is not predictable. Update and
management tools must become smart about maintaining con-
nectivity in the face of these difficulties to manage nodes to
which there’s no direct access. In the remainder of this paper,
we outline a prototype system that aims to begin to address
these challenges.

III. System Architecture

Our peer-to-peer secure update framework requires every
node to have the following capabilities:

1Existing peer-to-peer management tools, for example APT-P2P [7] and
HashiCorp Serf [4], require NAT/firewall pinholes to be manually configured,
to allow access by the management tools, limiting their applicability to
environments with system administration support.

Operating SystemOperating System

Manager

NAT-TM BTclient
(Transmission)

Deployment

Puppet Ansible Shell

Update Agent

Operating System

BitTorrent
Client

Fig. 1: The architecture of Peer-to-Peer Secure Update
framework.

1) it can receive update notifications and download the
update file from at least one other peer;

2) it can relay notifications/share updates with other peers;
3) both (1) and (2) should work even though the peer is

behind NAT or firewall;
4) it can independently deploy updates on local node; and
5) it can verify integrity of notifications and updates to

avoid malicious activity, e.g., man-in-the-middle attacks.
Driven by the above requirements, we design a framework

whose architecture is depicted in figure 1. The framework uses
an agent, that runs on every node, which consists of four
components: manager, NAT traversal messaging (NAT-TM),
BitTorrent client, and deployment. The design is mainly tar-
getting a system that runs a Linux operation system, although
it can be adapted to other platforms.
The manager is a component that receives an update notifi-

cation in the form of torrent-file either from an administrator
or other agents. It uses a public-key, which is installed on
every node, in order to verify the integrity of torrent-file. It
triggers the download by passing the torrent-file to BitTorrent
client, and calls deployment component to apply the update
once the download has finished. It also relays the notification
to its peers using a peer-to-peer overlay network provided by
NAT-TM.
The NAT Traversal Messaging component (NAT-TM) pro-

vides a peer-to-peer overlay network which uses a gossip
protocol to distribute a message to its peer, in scope similar
to the one that is implemented in Serf [4]. It uses the UDP
hole punching via the STUN protocol [8], [5] to enable bi-
directional communication with nodes behind NATs.
The BitTorrent client receives a torrent-file from manager

and uses it to download the update file from its peers. Our
prototype is using an off-the-shelf BitTorrent client i.e. Trans-
mission [9] which supports Distributed Hash Table (DHT)
[10] that enables trackerless network. Manager monitors the
download status from the log file generated by Transmission.
Finally, the deployment component receives the update file

and the target resource identifier from manager. It then invokes
a provisioning tool such as Puppet or just simply a shell script
to apply the update.
The standard format of torrent-file contains trackers’ address

and files’ information, where each file’s information consists
of filename, file-length, piece-length, and cryptographic-hash
of file pieces [11]. However, there are some important in-
formation that are missing from this standard, which are

required by our framework to work properly, including: 1)
digital signature, for integrity checking; 2) resource identifier,
which distinguishes two different target resources that will be
updated; and 3) version, that helps the agent to ignore outdated
update which might still exist in the network. Because of this,
we enrich the standard format with these new information.
For signature, we implement a draft scheme that is proposed
in [12] which uses a private-key owned by the administrator,
and a public-key installed on every node, for signing and
verifying the torrent-file. Unfortunately, we are not aware
of any proposal that provides the other two. Thus, we add
a Uniform Resource Identifier (URI) and a (monotonically
increasing) version into our new format, which is called as
torrent-file++.
Our current design considers two main threats: 1) man-

in-the-middle attack, and 2) re-distribution of an old, poten-
tially vulnerable, version of the software. The agent mitigates
the former by discarding any torrent-file++ that fail the
digital signature verification. For the latter, the agent uses
the URI to retreive the last update version (from its local
database) that had been applied before, and only accepts the
torrent-file++ with newer version.
We choose BitTorrent because it has been widely proven

to be reliable to securely distributing files. The file integrity
can be verified using cryptographic-hash of file-pieces. Popular
BitTorrent clients, such as Transmission, implement NAT Port
Mapping protocol (NAT-PMP) [13] to work with NATs. We
also can limit the network usage of the BitTorrent clients for
low bandwidth environments.

IV. Example

This section gives an example that illustrates the operations
of our peer-to-peer secure update framework.

Assume we have a 4-nodes system as illustrated in figure
2a, where: node 1 is fully connected to the internet; node 2
is in a private network connected to the internet via a NAT;
and node 3 and 4 are in a private network connected to the
internet via a restricted firewall which does not allow any
communication initiated from outside. Each node runs an agent
whose architecture is depicted in figure 1.

As administrator, we would like to apply an update on
all nodes to fix a security vulnerability. The process of
deploying this update using our peer-to-peer framework can
be summarised as follows:
• (Figure 2a) The administrator creates a torrent-file from
the update-file, signs it using a private-key, and uploads
both files into node 1. Note that the files could be
uploaded to any node.

• (Figure 2b) The agent of node 1 verifies the integrity of
torrent-file using its public-key as well as the integrity
of update-file using cryptographic hashes of file piece
available in the torrent-file. The update will be deleted if
the verification fails. Otherwise, the agent deploys it on
local node and then passes the files to a BitTorrent client
for sharing with other nodes.

• (Figure 2b) The agent of node 2 performs a UDP hole
punching by sending a message to the STUN server
through the NAT. This opens a particular port (EPort2)
on the NAT router which is accessible from internet.
The STUN server records this information by keeping
the internal IP and port (IP2, Port2) and the external IP
and port (EIP2, EPort2) of node 2 in its session table.
Since the router will close EPort2 if there is no activity
for a period of time, then the agent periodically sends a
keepalive message to the STUN server to keep the port
open.

• (Figure 2b) For node 3 and 4, the administrator should
manually reconfigure the firewall to open a particular port
allowing incoming UDP packets to a trusted node, which
in this case is node 3. While node 4 will use node 3 as
a bridge. The agent of node 3 sends a message to the
STUN server that allows its internal IP/port (IP3, Port3)
and external IP/port (EIP3, EPort3) to be recorded in the
session table.

• (Figure 2c) The STUN server sends its session table to
node 1, 2 and 3 so that each node knows which IP/port
that should be used to communicate with the others. This
activity is done periodically in order to propagate any
changes on the session table whenever some nodes joins
or leaves the cluster.

• (Figure 2d) After the agent of node 1 knows the external
IP/port of node 2 and 3, then it sends the torrent-file
to these nodes as a notification that a new update is
available. The agents of node 2 and 3 then verify the
integrity of torrent-file using their public-keys. If it is
verified, then the agent of node 3 sends the torrent-file to
node 4, which will also verify it using its public-key.

• (Figure 2e) Since the agents of node 2, 3, and 4 already
have the torrent-file, they could start downloading the
update-file by submitting the torrent-file to the BitTorrent
client.

• (Figure 2f) When the download has finished, the agents
can deploy the update on their local node by invoking
necessary management scripts.

V. Related Work

Mainstream OS update services feature peer-to-peer con-
tent distribution. For instance, the Windows 10 ‘Delivery
Optimization’ system [14] provides a peer-based distributed
cache, as of late 2016, to mitigate bandwidth issues for large
updates [15]. The Debian package management tool has an
integrated peer-to-peer download facility called apt-p2p [7],
[16]. It fetches update files using BitTorrent, via a transparent
http proxy. Package validation requires cryptographic hash
value comparisons with known values from a trusted server.
Dale and Liu [16] identify problems with peer-to-peer

updating, such as long wait times and different users requiring
different subsets of available applications. Zhang et al. [17]
present optimizations to the underlying Kademlia distributed
hash table (DHT) algorithm to improve the file-piece search

Node 1

InternetSTUN
Server

NAT

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall

(a)

Node 1

InternetSTUN
Server

NAT
(EIP2:EPort2)

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall
(EIP3:EPort3)

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

(b)

Node 1

InternetSTUN
Server

NAT
(EIP2:EPort2)

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall
(EIP3:EPort3)

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
IP4:Port4

(c)

Node 1

InternetSTUN
Server

NAT
(EIP2:EPort2)

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall
(EIP3:EPort3)

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
IP4:Port4

(d)

Node 1

InternetSTUN
Server

NAT
(EIP2:EPort2)

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall
(EIP3:EPort3)

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
IP4:Port4

(e)

Node 1

InternetSTUN
Server

NAT
(EIP2:EPort2)

Private
Network

Node 2

Node 4 Node 3
IP3:Port3

Private
Network

Firewall
(EIP3:EPort3)

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
EIP3:EPort3,IP3:Port3

EIP3:EPort3,IP3:Port3

EIP2:EPort2,IP2:Port2
IP4:Port4

(f)
updated-nodenode torrent-file update-file

Fig. 2: An example update process of a system where some nodes are behind a NAT (node 2) or a firewall (node 3 and 4).
IPx , Portx , EIPx and EPortx are the internal IP address, the internal port, the external IP address, and the external port of the
agent on nodex , respectively.

performance. However these problems are not relevant to the
challenges mentioned in section II.

Other system-level peer-to-peer distribution services include
peer-npm [18] which handles JavaScript package management.
This is a modular system, so it can interface with multiple
distributed file system backends to retrieve packages and
metadata.

BitTorrent, torrent-tracker, and distributed hash table (DHT)
implementations are all well-known aspects of peer-to-peer
distribution networks. Our system relies on these openly
available technologies.

Serf [4] is a gossip-based protocol [19] that enables de-
centralized service discovery and orchestration in a cluster of
nodes. It supports an event-based system, effectively enabling
a peer-to-peer publish/subscribe model. Our system uses a
similar protocol to inform IoT nodes of configuration change
events.

Puppet [1], Chef [2], and Ansible [3] are industry-standard
configuration management tools, provisioning software and
services on remote nodes. These tools generally require contin-
uous network connectivity for master/slave style orchestration.

Our work involves moving configuration management to a
more heterogeneous, distributed network, while still maintain-
ing some compatibility with existing solutions. For instance,
we support Puppet updates initiated via our overlay network.
One early suggestion for updating a network of sensor

nodes involves assigning a random slot time for each node
to download the update from a central server [20].

VI. Conclusion and Future Works

We have developed a peer-to-peer secure update framework
and proved that its prototype can update securely the system
with partial network connectivity, and works in the presence
of NATs or firewalls.
Future work will integrate this peer-to-peer secure update

framework into the FRµIT2 testbed to enhance scalability, and
allow us to manage hosts in challenged network environments.

2The Federated RaspberryPi µ-Infrastructure Testbed (https://fruit-testbed.
org) is a testbed of federated, geo-distributed micro-datacenters. The project
aims to aggregate low-cost, low-power, commodity infrastructure to form an
efficient and effective compute fabric for key distributed applications.

Acknowledgements
This work is funded by UK Engineering and Physical

Sciences Research Council under grant EP/P004024/1.
References

[1] V. Hendrix, D. Benjamin, and Y. Yao, “Scientific Cluster Deployment
and Recovery - Using Puppet to simplify cluster management,” Journal
of Physics: Conference Series, vol. 396, no. 4, Dec. 2012.

[2] M. Marschall, Chef Infrastructure Automation Cookbook. Packt Pub-
lishing, 2013.

[3] M. Mohaan and R. Raithatha, Learning Ansible : use Ansible to
configure your systems, deploy software, and orchestrate advanced IT
tasks. Packt Publishing, 2014.

[4] HashiCorp, “Serf: Decentralized cluster membership, failure detection,
and orchestration,” https://www.serf.io/, 2017, Accessed: 2017-12-20.

[5] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal
utilities for NAT (STUN),” IETF, October 2008, RFC 5389.

[6] J. Rosenberg, “ICE: A protocol for NAT traversal for offer/answer
protocols,” IETF, April 2010, RFC 5245.

[7] C. Dale, “apt-p2p – apt helper for peer-to-peer downloads of
debian packages,” http://manpages.ubuntu.com/manpages/zesty/man8/
apt-p2p.8.html, 2017, Accessed: 2017-12-20.

[8] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication
across network address translators.” in Proc. USENIX Annual Technical
Conference, 2005.

[9] “Transmission,” https://transmissionbt.com, Accessed: 2018-01-25.
[10] A. Loewenstern and A. Norberg, “DHT Protocol,” http://www.bittorrent.

org/beps/bep_0005.html, January 2008.

[11] B. Cohen, “The BitTorrent protocol specification,” http://www.bittorrent.
org/beps/bep_0003.html, January 2008.

[12] C. Brown, “Torrent Signing,” http://www.bittorrent.org/beps/bep_0035.
html, July 2012.

[13] S. Cheshire and M. Krochmal, “NAT Port Mapping Protocol (NAT-
PMP),” IETF, April 2013, RFC 6886.

[14] Microsoft, “Windows update delivery optimization
and privacy,” https://privacy.microsoft.com/en-US/
windows-10-windows-update-delivery-optimization, 2017, Accessed:
2018-01-27.

[15] D. Halfin et al., “Deploy updates using Windows Update for
Business,” https://docs.microsoft.com/en-gb/windows/deployment/
update/waas-manage-updates-wufb, 2017.

[16] C. Dale and J. Liu, “apt-p2p: A peer-to-peer distribution system for
software package releases and updates,” in IEEE INFOCOM 2009, 2009,
pp. 864–872.

[17] Q. Zhang, J. Yu, L. Luo, J. Ma, Q. Wu, and S. Li, “An optimized dht for
linux package distribution,” in 15th International Symposium on Parallel
and Distributed Computing (ISPDC), 2016, pp. 298–305.

[18] S. Whitmore, “peer-npm,” https://www.npmjs.com/package/peer-npm,
2017, accessed: 2018-01-27.

[19] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie,
“Epidemic information dissemination in distributed systems,” Computer,
vol. 37, no. 5, pp. 60–67, 2004.

[20] G. Pollock, D. Thompson, J. Sventek, and P. Goldsack, “The
asymptotic configuration of application components in a distributed
system,” University of Glasgow, Technical Report, 1998. [Online].
Available: http://eprints.gla.ac.uk/79048/

