
OTCP: SDN-Managed Congestion Control
for Data Center Networks

Simon Jouet∗, Colin Perkins† and Dimitrios Pezaros‡
School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland

Email: ∗simon.jouet@glasgow.ac.uk, †csp@csperkins.org, ‡dimitrios.pezaros@glasgow.ac.uk

Abstract—TCP suffers from incast collapse in data center
networks when used with partition aggregate workloads due
to inadequate congestion control parameters. This causes poor
application performance by under-utilizing the network, and can
be one of the limiting factors in low-latency, high-throughput en-
vironments. To resolve this, we present Omniscient TCP (OTCP),
a Software Defined Networking (SDN) approach to compute
environment-specific congestion control parameters based on
centrally available network properties. Through experimental
evaluation in Mininet, we show up to 12× and 31× reduction in
Flow Completion Time (FCT) at the mean and 95th percentile,
an 8× FCT improvement on highly congested networks when
combined with DCTCP [1], as well as improved fairness and
reduced end-to-end latency.

I. INTRODUCTION

Numerous warehouse-scale datacenters have been deployed
in the last decade to support the emerging needs of Inter-
net applications and services, ranging from web search to
storage and general large-scale computation clusters such as
Hadoop [2]. In order to support existing applications and
improve the cost-efficiency of such deployments, datacenters
have been built using traditional internet technologies. As
such, the time-tested TCP protocol is used as transport for
most applications. However, TCP was originally designed to
operate over the wide area where the network characteristics
are unknown and the latency, throughput, packet loss and flow
characteristics are widely different from those in a datacenter
environment [3]. This mismatch between the TCP congestion
control parameters and the operating environment of a datacen-
ter are responsible for a phenomenon called TCP throughput
incast collapse, resulting in under-utilizing the network and
delivering extremely poor performance for applications with a
partition-aggregate traffic pattern [4], [5].

As datacenters are managed by single authoritative entities
and centralized management protocols such as OpenFlow are
becoming increasingly popular, the unknowns upon which
TCP congestion control parameters are set should be revisited.
In contrast to the wide-area Internet, the topology, throughput,
latency, and device properties are known or discoverable
which can be used instead of the conservative and inade-
quate default congestion control values. Therefore, in such an
environment, it comes to question whether each host should
still estimate its own congestion control parameters based on
locally-observable network behaviour, or environment-specific

parameters should be computed globally using available in-
formation and distributed to the hosts. As a consequence of
managing the congestion control parameters centrally, typical
misbehaviour created by the static pair-wise congestion control
configuration, including long latencies, low throughput and
unfairness can be alleviated. Previous work on TCP have
addressed some of these issues, such as DCTCP designed
specifically to reduce overall buffer occupancy of the switches
in the fabric causing long packet traversal delays. Even though
the performance improvements of DCTCP is significant it still
suffers from poor performances under bursts of short-lived
flows due to its inadequate congestion control parameters.

In this paper, we present and evaluate Omniscient TCP
(OTCP), a Software Defined Networking (SDN) approach to
improve the overall network performance and utilization of
modern SDN-managed infrastructures using the legacy TCP
protocol. OTCP is able to achieve this by centrally collecting
the network infrastructure properties and subsequently com-
pute and distribute congestion control parameters suitable for
the operating environment. Through OpenFlow [6], the leading
realization of SDN, OTCP can be deployed side-by-side with
a controller to collect operating network metrics including
topology, latency, throughput and switches’ buffer sizes. Once
those metrics are collected, OTCP calculates suitable TCP
retransmission timers, RTOmin and RTOinit, as well as the
initial and maximum congestion window size that matches
the route Bandwidth Delay Product (BDP) between end-hosts.
Finally, OTCP exposes a JSON/REST northbound interface, to
which an end-host daemon connects to receive the congestion
control parameters when a connection is established to a new
host within the infrastructure. Through evaluation on Mininet,
we highlight that centralized management of the congestion
control parameters is not only possible, but also significantly
improves the infrastructure performance. Using retransmission
timers that match the network latency instead of being 2-to-3
orders of magnitude longer than the fabric latency, network
utilization can be significantly improved by reducing idle
transmission times waiting for the timeouts to elapse. Using a
congestion window matching the BDP of the network prevents
the buffers of the bottleneck switches to overflow immediately
after the initial window (IW) of the synchronized flows is
sent, reducing network latency and improving fairness amongst
competing flows.

The remainder of this paper is structured as follows: Section
II describes the typical datacenter network characteristics978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

and the misbehavior of TCP over such low-latency, high-
throughput environments. In section III, we present the de-
tails of OTCP, a SDN-based approach to congestion control
parameter management. We evaluate OTCP in Section IV and
show that it outperforms TCP with a flow completion time
(FCT) improvement by 12× at the mean and 31× at the
95th percentile, better fairness amongst competing flows and
a reduction in end-to-end delay. We also show that OTCP
can be used in conjunction with DCTCP to achieve an 8×
improvement in FCT in a highly congested network. Section
V discusses related work, and section VI concludes the paper.

II. TCP IN DATA CENTERS

A. DC Network Characteristics

TCP has been designed to operate efficiently over WAN
networks, however in DCs the network characteristics are dif-
ferent. The reported values from large scale providers highlight
that TCP accounts for 99.9% of DC traffic [1]. Nearly 75%
of the traffic stays within a rack, and most of it is kept within
the data center [3]. The network can be highly oversubscribed
between the different layers of the fabric. At the rack level,
each machine has an associated 1 or 10 Gigabit Ethernet
(GbE) link to the top of rack (ToR) switch. The aggregation
layer (Agg) responsible for interconnecting ToRs together has
typically a 5 - 20 oversubscription ratio, while the core of
the network is typically oversubscribed by a factor of 80 -
240 [7]. With latencies varying from hundreds of microseconds
within the same rack to few milliseconds inside the same DC,
a single-value-fits-all for TCP congestion control in DCs is not
suitable without being overly aggressive or conservative. The
traffic characteristics are different to the Internet, more than
50% of the time a machine has 10 concurrent flows and at least
5% of the time it has over 80 [7]. 99% of the flows are mice
flows, small in size and delay-sensitive. The remaining flows
are large, representing 90% of the overall bytes transferred
and are throughput instead of delay sensitive [1], [7], [3].

DCs are managed by a single authoritative entity, therefore
infrastructure-wide characteristics are available. They can be
used to better tune the TCP stack for a specific environment
and manage the allocation of network resources. Contrary to
the Internet, the topology is known or can be discovered, there
are a limited number of hardware configurations available,
and they have known properties such as buffer occupancy,
switching speed and induced delay, dropping mechanisms,
and supported active queue management (AQM). In addition,
the bandwidth between nodes in the network is known or
discoverable, allowing a maximum bound on the congestion
window to be set based on the actual BDP of the path.

Over the last few years, SDN has become more and more
prominent in DC infrastructures since the OpenFlow protocol
defined a framework for network management and configu-
ration in a centralized manner. Through SDN, a centralized
controller is able to maintain, manage and control a full and
up-to-date view of the networking infrastructure. Using avail-
able information, such as the network topology and latency,

routing mechanisms, queue length and throughput, globally-
informed decisions can be made that would not have been
possible in a legacy network where the control plane is fully
distributed amongst the forwarding elements [6].

B. TCP Incast Collapse

A known problem in many DC is TCP incast throughput
collapse. This is caused by the typical partition-aggregate
workload where a single host issues a single query to a
large number of workers and waits for the response [8], [9].
The response of the multiple servers is highly synchronized,
generating a large burst of traffic from the workers to the
aggregator, overwhelming the buffer of the bottleneck switches
and causing significant packet losses. Consequently, TCP is
unable to recover using fast retransmission and relies on the
retransmission timeout (RTO), bound to a minimum value
(RTOmin) of 1 second by RFC2988 and no less than 200ms
by commodity operating systems. This 2–3 orders magnitude
difference between the network Round Trip Time (RTT) and
the timeout results in bursty retransmissions phases under-
utilizing the network, and resulting in low throughput and long
FCT for delay sensitive flows [1].

Traditionally, TCP incast collapse and the resulting low
throughput has been tackled by using deep-buffered switches,
reducing packet drop during congestion events, and ensuring
that the link is always utilized. However, as a side effect,
these deeper buffers induce large delays, retransmission syn-
chronization, unpredictable end-to-end RTT, and prevent the
congestion control algorithms to react in a timely fashion [10].
By hiding the congestion event, the large buffers prevent the
end hosts from adapting their sending rate to recover from
congestion, artificially increase the BDP of the network and
introduces high and variable latency for soft-realtime flows.
Therefore shallow-buffers are necessary to achieve low-latency
transmissions and the congestion control parameter settings
must be adequately tuned in the end-hosts to reflect the
properties of the fabric without the large buffers masking the
congestion events and artificially increasing the BDP of the
infrastructure.

Previous literature on TCP incast collapse has attributed the
misbehaviour of TCP and the extreme burstiness of the trans-
mission under partition-aggregate workloads, to the mismatch
of the retransmission timeout and network characteristics [4],
[11], [9]. The long retransmission timeouts, create long idle
periods between short transmission periods with high through-
put and high buffer occupancy and the next transmission event
triggered when RTOmin elapses. In this paper, we contribute
to this discussion by highlighting that the congestion window
control parameters should also be considered while solving
TCP incast. At the onset of congestion collapse, RTO is
used as a recovery mechanism, however, by also configuring
the congestion window to match the BDP of the network,
the rapid buffer build-up in the bottleneck switches can be
mitigated, consequently preventing numerous packet drops and
throughput collapse.

Discovery Modules
Queues ThroughputTopology & LatencyRouter

N
or

th
bo

un
d

Parameters calculation
(timeouts, congestion window)

Insert route
h1 h2

S
ou

th
bo

un
d

Push parameters to h1, h2

Network properties

OTCP

Fig. 1. Overview of OTCP architecture.

The IW, increased to 10 Maximum Segment Size (MSS)
in RFC 6928 from 2–4 MSS in RFC 3390 is not suitable for
high-throughput, low-latency networks. With an IW of 10 seg-
ments, a single flow can send up to 15kB of unacknowledged
data after the three-way handshake. In partition-aggregate
workloads, hundreds of short-lived flows can be initiated
simultaneously sharing the same bottleneck path, resulting
in a burst of few megabytes that will quickly overflow the
bottleneck switch. The value of 10 MSS might be suitable for
WAN environments with long fat pipes carrying few long-lived
large flows, however it is unsuitable for a DC environment
with numerous concurrent mice flows competing for high
throughput over extremely low latency links. IW should be
configured to match the BDP of the network as it represents
the amount of unacknowledged data on the path between
two endpoints. However, because of the large buffers on the
switches along the path, the delay can greatly vary from an idle
network to a network with all the buffers full. By configuring
the congestion control parameters on the idle latency of the
network, it would be possible to achieve maximum throughput
at the minimum latency achievable by the fabric.

Therefore, high throughput and low latency are achievable
in DC network with partition-aggregate workloads but require
fine tuning of multiple parameters. The size of switch buffers
is not strictly a congestion control parameter, but significantly
affects the algorithm’s behavior by hiding or delaying the con-
gestion events. Using shallow-buffered switches, the latency
can be kept low, however TCP’s large default IW quickly
overflows the buffers, resulting in low throughput. Adequately
tuning the IW to reduce the initial burst of packets and
subsequent overflow in the intermediate switches as well as
RTOmin to prevent long off periods between transmissions the
overall FCT of synchronized flows can be greatly improved.

III. OMNISCIENT TCP

In this section, we present Omniscient TCP (OTCP), a
tuning approach for TCP based on information available from
the controller in SDN-based DCs. The main goal is to address
the impairments of TCP under partition-aggregate workloads,
to achieve high throughput, and low and stable latency, with
commodity shallow-buffered switches. OTCP achieves this by
configuring TCP congestion parameters on a per-route basis
based on the end-to-end network characteristics including

OFDP
ofp_echo
ofp_packet_out
ofp_packet_in

controller

Sj

SkSi

Fig. 2. Latency gathering at the controller using OpenFlow.

topology, latency, throughput, and buffering. The congestion
window is configured to match the distinct BDP of each route,
and the initial burst of traffic can be reduced, limiting the
number of packet drops, increasing goodput and fairness for
the flows. Using OpenFlow, static network characteristics of
large-scale networks can be collected when the controller-
to-switch connection is established. As the switching latency
and buffer size of switches are static, this approach only re-
quires incremental updates to the measurements on topological
alterations and therefore is not necessary to be performed
continuously to mitigate TCP incast collapse. An overview
of OTCP architecture is shown in figure 1.

A. OpenFlow network information gathering

To calculate suitable congestion control parameter settings
for the congestion window and the retransmission timeout,
readily available information including latency, buffer sizes
and link rate must be collected by the controller.

1) End-to-end latency: To calculate the minimum bound on
the RTO as well as the BDP, the idle latency of the switching
fabric must be measured. OpenFlow does not provide any
direct functionality to measure latency, however the protocol
is flexible enough to allow accurate measurements. A common
approach for topology discovery in an OF network is to
use the OpenFlow Discovery Protocol (OFDP), a variant to
the Link Layer Discovery Protocol (LLDP), which allows
custom Type-Length-Value (TLV) structures to be inserted in
the packet payload. By storing the current timestamp in the
TLV payload, OFDP can be used for both topology discovery
and latency measurement. The controller generates an OFDP
packet, issues a ofp packet out command to every switch
to flood the packet to its neighbours, upon reception the
neighbours forward the OFDP packet back to the controller
using ofp packet in. As shown in figure 2 this measurement
gives us the 3-hop latency from controller to Sj , Sj to Si and
from Si back to the controller. This latency is a combination
of the management and data network latency and includes the
time taken by the control plane to encapsulate and decapsulate
the OFDP message which can be significantly longer than data
plane latencies as discussed in [12].

The controller to switch latency is measured using Open-
Flow ofpt echo request and ofpt echo reply usually used
by the switch as a keep-alive signal. Using this approach to
measure the latency allows the control plane processing time
to be included as part of the measurements. Therefore using

this measurement as well as the 3-hop latency measured during
topology discovery the latency from Si to Sj can be measured.
Consequently, the latency between two arbitrary switches (Si

and Sk) through the route R is the sum of the latency of every
link traversed (equation 1).

LSi→Sk
=

∑
Ri→k

LSi→Si+1
(1)

These measurements provide accurate latency estimate of
the fabric, but do not include the latency between the ToR
switches and the hosts. In our implementation we have used
an approach that does not require any modification of the end-
hosts. The controller generates an ARP Probe packet and sends
it from the ToR switch to the host using a ofp packet out
message [13]. The host’s ARP response is then intercepted at
the ToR and sent to the controller. Hence, the RTT between the
switch and the host can be calculated based on the controller-
to-switch delay from this 4 hops latency. This approach is
especially suitable in environments where the controller is used
as a central directory service for the ARPs such as in VL2 [7].
Once the switch-to-switch and host-to-switch latencies are
measured, the minimum retransmission timer bound (RTOmin)
can be set to the round-trip delay between the two hosts. It
is worth noting than the previous discussion assumes that the
forward and return paths are the same, hence the forward link
latency and the return latency are equal. However if the links
are asymmetric the calculation can be easily modified to take
each latency independently.

2) Buffer Size: Buffering in the switches impacts the la-
tency of transmission of packets, as a packet can be delayed
by the time it takes to transmit all other queued packets. A
maximum bound on the latency can be calculated using the
maximum buffer occupancy of each switch and the egress link
rate. If queues have been assigned to the ports, the OpenFlow
controller can send a ofp queue get config packet to retrieve
the queue characteristics including the length in bytes as well
as the minimum and maximum data-rate (since OpenFlow
1.2). Therefore, the maximum bound on the retransmission
timer can be characterized by the idle latency (RTOmin) plus
the switches’ queue delay. For any switch s along the route
(R) from H1 to H2, the delay is the buffer size (Q) divided
by the egress link rate (T) (equation 2).

RTOmax(H1 → H2) = RTOmin(H1 → H2)+
∑
s∈R

Qs

Ts
(2)

The initial retransmission timeout (RTOinit) can be equally
set to the same value as RTOmax, however, some additional
delay can be caused at the end hosts, for instance if connec-
tions have been backlogged or the machine is highly utilized.
However by stressing source and destinations CPU cores at
100%, high number of IO operations and numerous memory
operations, the maximum increase in latency we have observed
in our experiments was 131µs. In TCP, RTOinit is one order
of magnitude larger than RTOmin. In OTCP, and in order to

account for the possible increase in latency on highly loaded
hosts, we set RTOinit to twice RTOmax.

3) Link Rate: To associate a rate to each link of the topol-
ogy, the controller listens for ofp port status asynchronous
messages containing the port operating mode (10Mb, 100Mb,
1Gb, 10Gb). Knowing the latency (L) between H1 and H2,
and the maximum sending rate between those two points (T)
characterized by the lowest link rate along the route (R), the
maximum value of the congestion window (CWNDmax) can
be calculated as the BDP (equations 3, 4).

BDPH1→H2
= RTTH1→H2

× TR (3)

CWNDmax(H1 → H2) = BDPH1→H2
(4)

By integrating simple measurements to the topology dis-
covery and querying the switches configuration parameters, a
controller is able to collect and manage the metrics required
to calculate finely-tuned congestion control parameters for the
operating environment. As described previously, these mea-
surements are only required when the operating parameters
are modified, such as the replacement or addition of links and
switches and are not continuously required.

B. OTCP parameter propagation

To distribute the congestion control parameters, the con-
troller exposes a JSON/REST northbound API to which a user-
space daemon in the end-hosts connects. When the controller
updates the route characteristics, the daemon is notified with
the updated values, and the route entry associated is updated.
In the Linux kernel, since the kernel version 2.6.23, most TCP
congestion control parameters can be configured from user-
space for specific destination IP addresses or subnets using
netlink to configure the kernel routing table. However, the
initial retransmission timeout cannot be configured without a
simple kernel modification (16 lines of code in our imple-
mentation). These parameters are used by newly established
flows instead of the default conservative ones. Such approach
requires each end-host to execute a small custom daemon (<50
lines of code) connecting to the controller. However, with the
increasing importance of network virtualization and virtual
machines, end-hosts are already heavily customized, hosting
hypervisors, monitoring software, and other daemons.

On port or switch failure, the controller is notified either
with a ofp port status packet sent by the switches when
a port changes state, or of device failure when the TCP
connection is torn down. When such event is received, as
typical in an OF environment, the new route is computed by
the controller and the associated congestion control parameters
are also recomputed and sent to the relevant end-hosts. As
these events are triggered by link removal it is not required
to perform new measurements as the new path will be along
links and switches with already known characteristics.

Using the kernel routing table to configure congestion
control parameters allows the daemon on the end-host to

HostHost
x10

1 Gbps
0.2 ms

Agg

Core

Agg

Controller

60pkts

ToRToRToRToR

60pkts

10x1 Gbps
0.1 ms

1 Gbps
1 ms

HostHost HostHost HostHost

Fig. 3. OTCP Emulation Network Topology

be extremely lightweight. However to improve network per-
formance, routing strategies such as Equal-Cost Multi-Path
(ECMP) can be used to load-balance the traffic amongst
multiple paths. In such situation the destination-based entries
in the routing table might not be sufficient, and therefore the
daemon should be designed to configure individual sockets
when they are created. From a controller aspect the logic is
similar, simply requiring parameters to be calculated for the
different available routes.

C. Initial Congestion Window

The size of the initial congestion window is dependent on
the maximum congestion window as well as the number of
active flows in the network during the slow-start phase. Setting
the congestion window too high with respect to the BDP will
lead to queue build-up on the traversed switches, and conse-
quently to higher latencies and unfairness in flow throughput.
Setting the congestion window too low will require more
RTTs to reach the bottleneck capacity of the link, lengthening
the slow-start phase and therefore increasing FCT. In OTCP,
we set CWNDinit (IW) to a fraction of the CWNDmax,
since CWNDmax represents the maximum congestion window
assuming a single flow along the path. When the path is shared
between multiple flows, the maximum congestion window of
each flow should be CWNDmax divided by the number of
active flows (α) in the link (equation 5). In low latency, high-
throughput environments CWNDmax is small, thus as number
of flows α increases the CWNDinit will quickly reach its
minimum value of 1 MSS.

CWNDinit = min(1,
CWNDmax

α
) (5)

In the current implementation α can be configured ei-
ther manually to a value matching the maximum number
of flows that will fan-in from the workers or updated at
run-time by polling the flow statistics of switches using
ofp flow stats request similarly to the approach used by
Hedera [14]. Using the flow statistics require every TCP flow
to have a matching flow table entry in the switches which
might be impractical in large networks where edge switches
can have fewer table entries available than the number of
concurrent TCP flows. Future work will investigate the use

 0
 200
 400
 600
 800

 1000

Tor Agg Core

M
ea

su
re

d
on

e
w

ay
la

te
nc

y(
µs

)

Link Layer

Mininet
ICMP
OTCP

Fig. 4. Switch-to-switch and host-to-switch latency measurement comparing
the topological settings, ICMP and OTCP.

of OpenFlow TCP flag matching (OpenFlow 1.5) as well as
the upcoming research on data-plane programmability [15],
[16] to monitor the number of active flows in the network and
tune α accordingly.

These improvements solve TCP Incast collapse by allowing
multiple mice flows to highly (throughput) and efficiently
(goodput) use the network fabric without suffering from long
latencies which are problematic for soft-realtime traffic.

IV. EVALUATION

In this section, we demonstrate how OTCP can successfully
mitigate TCP incast collapse in DC environment by improving
latency, throughput, goodput, and fairness. The performance
evaluation is performed on a Mininet HiFi 2.2 emulation
network for large scale experimentation.

A. Experimental Setup

The experimental topology for OTCP as illustrated in Figure
31, has been set up as a typical three-layer tree with an
increasing over-subscription ratio and latency at the higher
layers. This setup has been used to simulate the bandwidth,
latency and oversubscription expected in a production grade
DC [7], [1]. To achieve a 10:1 oversubscription at gigabit
rate, each rack contains 10 hosts connected with a gigabit
link to the ToR and an egress link from ToR to Agg also at
1Gbps. To match with the latencies varying from hundreds of
microseconds within the same rack, to few milliseconds for
traffic traversing the aggregation and core layers, the latency
of the link from host-to-Tor is set to 100µs. This value results
in a host-to-host RTT of 0.4ms, matching published values [4].
To achieve millisecond latency at the Agg layer, ToR-to-Agg
latency has been set to 0.2ms resulting in a 1.2ms latency and
finally Agg-to-Core to 1ms to get cross DC latency of 5.2ms.

To match the shallow buffers of commodity switches, all
switches have egress queues of 60 packets regardless of the
layer of the topology, with a drop-tail mechanism and without
any AQM for early congestion notification or drop. Finally,
the Linux kernel for the Mininet host is 3.19.4 with the
stock TCP parameters using TCP CUBIC, a 10 MSS IW, a
RTOmin of 200ms, and an RTOinit of 1s (decreased from
3s since version 3.2 of the kernel). Both the northbound
(REST) and southbound (OpenFlow 1.3) interfaces have been

1https://bitbucket.org/sjouet/otcp

TABLE I
OTCP CALCULATED ROUTE PARAMETERS

RTT
(µs)

RTOmin
(ms)

RTOmax
(ms)

RTOinit
(ms)

CWNDmax
(MSS)

IW
(MSS)

ToR 629 1 2.069 4 49 1
Agg 1485 2 5.805 12 127 2
Core 5571 6 12.771 25 476 5

implemented in a single Go controller designed for the purpose
of OTCP managing OpenvSwitch (OvS) software switches in
mininet. To prevent the management traffic from impacting the
production traffic and vice-versa, the traffic to the controller
is on a separate out-of-band network.

B. OTCP measurements

We first evaluate the ability for the controller to collect
the measurements defined in section III-A from the network
infrastructure using OpenFlow. These measurements should
be conducted when the network is idle, when the buffers
are empty, as we are interested in bounding RTOmin to the
fabric latency, and setting the congestion window to a value
achieving maximum throughput without requiring buffering
in the intermediary switches. In Figure 4 we present the
mean latency of 100 independent measurements comparing the
latency configured in the topology (Mininet, Figure 3), ICMP
ping, and OTCP latency measurements. We can see from these
measurements that the latency of each link can be measured
accurately even in low latency environments with OTCP and
ICMP returning similar metrics close to the baseline.

Table I shows the route parameters, grouped by layer,
calculated by OTCP based on the latencies shown in Figure
4, and the buffer size as well as throughput of the network.
Due to the time granularity of the Linux kernel, RTOmin has a
minimum integer value of 1ms and we have therefore rounded
the RTT to the highest integer in order to calculate RTOmin.
RTOmax represent the maximum delay the network fabric can
have considering the egress queue of each switch traversed is
fully occupied. In the topology, the maximum queue length
(Qs) regardless of the switch layer is 60 packets, in the worst
case scenario each packet is of maximum size (MTU) totalling
to 90000 bytes. The egress link has a throughput of 1Gbps
(Ts) and therefore the maximum delay each buffer traversed
is 720µs. As stated in Section III-A2, in OTCP RTOinit is set
to twice the RTOmax and must be expressed in milliseconds
similarly to RTOmin. CWNDmax is set to match the BDP
of the network, therefore it is the RTT times the bottleneck
throughput divided by MSS. Dividing the BDP by MSS is
required as the Linux kernel expresses the congestion window
as a multiple of the MSS. Finally, IW is set to match the
number of expected 100 synchronized flows (α).

C. Flow Completion Time

We evaluate TCP, OTCP and DCTCP perfomance under
TCP incast with respect to the mean overall FCT to show
overall behaviour and at the 95th percentile to highlight un-
fairness between competing flows. DCTCP is a variant of TCP

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

Flow Size (packets)

TCP
DCTCP

OTCP
ODCTCP

(a) Mean FCT

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100F
lo

w
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

Flow Size (packets)

TCP
DCTCP

OTCP
ODCTCP

(b) 95th percentile FCT

Fig. 5. Mean and 95th percentile Flow Completion Time for mice flows from
1 to 100 MSS sized packets. Note the logarithmic y axis.

designed to reduce buffer build-up through Explicit Conges-
tion Notification (ECN). Instead of the common approach of
treating ECN markings as a packet loss and react by halving
the congestion window, DCTCP uses multiple ECN marks to
adapt the sending rate [1]. This approach requires support from
both source and destination hosts as well as ECN support
in intermediary switches but can reduce buffer utilization
by 90% resulting in lower latencies. We also have defined
ODCTCP, a combination of OTCP and DCTCP to finely tune
the congestion window and retransmission timeouts (OTCP)
while preventing queue build-up in the intermediary switches
(DCTCP). OTCP uses the parameters shown in Table I.

We compare different variants of TCP with respect to the
FCT of flow experiencing incast collapse. A single host is set
as the aggregator and the remaining nodes initiate a short-
lived burst of traffic to the aggregator simulating a partition-
aggregate situation. In this scenario, 1 host is used as the
aggregator and the remaining 9 hosts as the workers leading
to a 9:1 oversubscription. For each round of the experiment,
the worker nodes each initiate 10 flows to the aggregator with
a size varying from 1 to 100 MSS-sized packets, totalling to
90 mice flows received at the aggregator.

In Figure 5a we observe that the mean FCT for both TCP
and DCTCP is dominated by RTOmin when the flow size is
20 and 40 packets respectively. This is explained by IW being
too large, quickly filling the buffers dropping more packet than
required for F-RTO to be triggered and therefore relying on
RTOmin to retransmit lost packets. DCTCP does not solve
the problem of incast collapse on short-lived flows, because
DCTCP relies on ECN markings to adapt the sending rate.
This approach requires 1 RTT to be effective due to ECN, once
the buffer has already been overflowed by each flow sending

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Cu
m

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

Flow Completion Time (ms)

TOR DCTCP
Agg DCTCP

Core DCTCP
TOR OTCP
Agg OTCP

Core OTCP

Fig. 6. CDF of Flow Completion Time (FCT) comparing OTCP with default
TCP in a three-layer topology

their initial window. Therefore it reacts to congestion only
after the congestion event has passed. OTCP and subsequently
ODCTCP, using finely tuned parameters avoid overflowing the
buffers from the initial burst and recover quickly on packet
drops resulting in an improvement of up to 12× in mean FCT.

Figure 5b shows the FCT at the 95th percentile. We can
observe a similar pattern as for the mean with TCP and
DCTCP performing similarly and the FCT being dominated
by RTOinit instead of RTOmin. In this case, due to the large
IW, the SYN packet of some flows is dropped by the switch
requiring RTOinit to elapse before the packet is resent. These
long delays at the 95th percentile result in long tails in the
overall FCT. Using OTCP the FCT of the long tail flows can
be improved by 31×. Overall, at the mean and 95th percentile,
OTCP performs similarly ensuring fairness amongst flows and
no long delays caused by a minority of the flows.

Finally in Figure 6, we show the Cumulative Distribution
Function (CDF) of the FCT for OTCP and DCTCP across the
three layers of the topology. For clarity, we have omitted TCP
and ODCTCP from this experiment. In the three scenarios,
OTCP outperforms DCTCP. RTOmin and RTOinit for DCTCP
are clearly visible on the FCT. At the three layers, we can
observe a plateau of 200ms as well as a long tail at 1s
generated by the loss of the initial SYN packet. When traffic
is confined in the same rack, OTCP is able to complete all of
the flows in less than 30ms compared to DCTCP completing
82% of the flow in the same interval, 97% after 250ms and
every flow after 1 second. Through the agg layer, using OTCP,
all the flows are transmitted in 40ms while DCTCP completes
86% in the same time and 98% after 220ms. Finally, at the
core, OTCP completes transmission after 80ms while DCTCP
completes 72% in the same interval and 89% after 250ms.

D. Goodput

In order to show that the link is fairly shared amongst
the competing flows, we compare the goodput distribution
of the different congestion control algorithms. In figure 7 we
highlight that the goodput distribution for TCP and DCTCP
is unfair with few flows reaching extremely high throughput
and most flows performing poorly. Consistent with the FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Cu
m

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

Goodput (Mbit/s)

TCP
DCTCP
OTCP

ODCTCP

Fig. 7. CDF of flow goodput experiencing incast collapse.

evaluation for TCP and DCTCP, a large number of flows
achieve a goodput of less than a 1Mbit/s due to long off periods
and few lucky flows are able to achieve high goodput. This
long tail in goodput represents the few flows that were able
to send the full IW of 10 MSS without retransmissions, and
therefore completed early their transmission.

O(DC)TCP does not suffer from this unfairness in goodput,
with every flow transmitting from 10 to 30 Mbit/s while
for TCP and DCTCP it ranges from lower than 1Mbit/s to
80Mbit/s. This fairness improvement is achieved by reducing
the IW and therefore better interleaving the packets when the
synchronized flows send their IW and resulting in each flow
observing a similar level of network congestion. These obser-
vations highlight that in OTCP the bandwidth is fairly divided
amongst the competing flows, reducing the impact of incast
collapse and improving the end-to-end goodput necessary for
partition-aggregate workloads to operate properly.

E. Background traffic

The previous experiments have shown that OTCP can pre-
vent the overflow of the traversed buffers by reducing the
initial window to a value close to the BDP as well as recover
quickly from packet loss using tuned retransmission timers.
In OTCP, long-lived background flows can increase their
congestion window up to the clamp value CWNDmax (Table
I) that matches the BDP of the path, however, when multiple
concurrent long-lived flows share the same bottleneck path, the
total number of unacknowledged packets can increase above
the BDP and therefore create queue build-up. Most flows in
DC are mice flows, however, most of the traffic is carried by
a minority of background flows that are throughput instead of
delay sensitive called elephant flows. These background flows
used for data consistency, migration or replication are long
lived and cause queue build-up in the switches.

We have further evaluated the FCT of flows experiencing
incast collapse when the traffic traverse the core layer of the
network and every layer is heavily utilised by background
flows. Figure 8 shows the mean FCT of the four different
congestion control algorithms. For this evaluation both mice
and elephant flows are managed by the same congestion

 0
 0.5

 1
 1.5

 2
 2.5

TCP DCTCP OTCP ODCTCP

M
ea

n
FC

T
(s

)

Congestion Control Algorithm

Fig. 8. Mean FCT of flows under incast with an heavily utilized network.

control algorithm. At every layer, the background traffic is
generated from multiple hosts resulting in queue build-up
increasing end-to-end latency and resulting in larger number
of packet drops during the incast event as no buffer space is
available. In this scenario TCP is known to perform poorly
as it does not prevent queue build-up and the 10 segments
from the IW as well as long RTO worsen the problem [10].
DCTCP was specifically designed to address the queue build-
up from the background flows but still suffers from large IW
and long RTO. OTCP suffers from the queue build-up from the
background flows but reduces incast collapse by only sending
few packets in the initial window and recovering quickly from
dropped packets. Finally, we show that OTCP over DCTCP
(ODCTCP) complement each other: OTCP allows finely-tuned
parameters to be used adjusting the initial window to match the
BDP of the network and the retransmission timers to match the
latency of the network while DCTCP prevents queue build-up
at the switches improving mean FCT by 8×.

V. RELATED WORK

Significant work has been done on TCP to optimize its
performance in specific environments. Variants such as the
Rate Control Protocol (RCP) and the Variable-Structure con-
gestion Control Protocol (VCP) estimate link congestion to
avoid queue build-up but require custom support on the switch
and end-hosts [17]. Fast TCP and XCP have been proposed
for environments opposite to DC using long-distance, high-
latency links [18], [19]. These protocols have been optimized
to achieve high throughput for long-lived flows over long fat
pipes (LFP), opposite to what OTCP aims to achieve. TCP
NewReno and TCP SACK modify the congestion mechanisms
to slightly increase the throughput, however do not prevent
TCP Incast collapse. TCP pacing has been proposed to tackle
low throughput, however it does not prevent high latencies
due to queue build-up when the number of concurrent flows
is high, and it is not effective in low-latency networks [20].

In order to recover from incast collapse and prevent the rip-
ple effect of synchronous retransmission after backoff, adding
jitter to the backoff timeout has shown an improvement on
the throughput, but a degradation on the mean FCT. Facebook
had the more radical approach to drop TCP and implement
a congestion algorithm on top of UDP with a transmission
window size based on the number of concurrent flows in the
system, supposedly halving the overall request time of their
memcache cluster [4]. Zhang et al. propose to retransmit the

last packet of the window multiple time to forcefully generate
ACK for F-RTO [9]. Another significant contribution to this
problem has been the evaluation of fine-grained retransmission
timeouts in a datacenter environment [4]. Allowing the mini-
mum retransmission timeout to match the round trip time of
the environment instead of using an overly conservative value
as well as providing high resolution timers for the TCP stack
shows that the throughput can be significantly improved and
long idle times between retransmissions can be prevented.

Fastpass proposes to disable congestion control in the end-
host and delegate individual packet scheduling decisions to
a controller [21] with a timeslot allocation by a controller
for every packet. This approach allows buffer to be kept at
low utilization and limit TCP retransmissions, at the cost of
increasing the mean time of each packet by the RTT between
the host and controller. PCC and Remy use machine learning
techniques to discover suitable congestion control parameters
for the network [22], [23]. PCC relies on online micro-
experiments performed by the end-hosts while Remy generates
parameters based on a priori knowledge of the network.

OTCP addresses the problem of Incast Collapse by cen-
trally calculating per-route congestion control parameters and
distributing these values to the end-hosts. In addition to the
minimum retransmission timeout covered by Vasudevan et
al. OTCP calculates the initial and maximum retransmission
timeouts as well as congestion windows bounds based on idle
network latency, throughput and buffer sizes.

VI. CONCLUSION

We have implemented Omniscient TCP (OTCP), a central-
ized controller-based protocol to calculate and manage conges-
tion control parameters for the low-latency, high-throughput
environment of DC networks. Using a SDN controller to
obtain topological and operational information about the in-
frastructure, route-specific congestion control parameters can
be calculated based on the complete view of the network
characteristics. By distributing those parameters to the end-
hosts, we show that TCP incast throughput collapse can
be mitigated, improving the performance of soft-real-time,
partition-aggregate applications.

Our results show that under TCP incast, OTCP significantly
outperforms TCP for short-lived, soft-real-time flows, with
a 12× improvement in Flow Completion Time at the mean
and 31× at the 95th percentile, a low and stable end-to-end
latency, as well as higher and fairer goodput. We also show
that OTCP can be used jointly with DCTCP to prevent queue
build-up and Incast collapse under bursts of traffic, reducing
FCT in highly congested networks by 8×. This is showing
that fine-tuned congestion control parameters can significantly
improve application performance experiencing TCP incast in
a DC environment.

ACKNOWLEDGMENTS

The work has been supported in part by the UK Engineering
and Physical Sciences Research Council (EPSRC) projects
EP/L026015/1 and EP/L005255/1.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
SIGCOMM 2010.

[2] L. A. Barroso and U. Holzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 2009.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in SIGCOMM IMC 2010.

[4] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective
fine-grained TCP retransmissions for datacenter communication,” in
SIGCOMM 2009.

[5] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM 2009.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM 2009.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in SIGCOMM 2009.

[8] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger,
G. Gibson, and S. Seshan, “Measurement and analysis of TCP through-
put collapse in cluster-based storage systems,” in FAST 2008.

[9] J. Zhang, F. Ren, L. Tang, and C. Lin, “Taming TCP incast throughput
collapse in data center networks,” in ICNP, 2013, pp. 1–10.

[10] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
Queue, vol. 9, no. 11, Nov. 2011.

[11] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in Workshop
on Research on Enterprise Networking 2009.

[12] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for openFlow switch evaluation,” in
PAM 2012.

[13] S. Cheshire, “Ipv4 address conflict detection,” 7 2008, RFC 5227.
[14] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in NSDI
2010.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
2013.

[16] S. Jouet, R. Cziva, and P. Dimitrios P., “Arbitrary packet matching in
openflow,” in HPSR 2015.

[17] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” SIGCOMM, vol. 36, no. 1, Jan. 2006.

[18] Y. Zhang and T. R. Henderson, “An implementation and experimental
study of the explicit control protocol (XCP).” in INFOCOM 2006.

[19] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast tcp: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[20] M. Podlesny and C. Williamson, “Solving the tcp-incast problem with
application-level scheduling,” in MASCOTS 2012, 2012.

[21] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A Centralized Zero-Queue Datacenter Network,” in ACM
SIGCOMM 2014, Chicago, IL, August 2014.

[22] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,” in
NSDI 15, May 2015.

[23] K. Winstein and H. Balakrishnan, “TCP Ex Machina: Computer-
generated congestion control,” in SIGCOMM ’13.

