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ABSTRACT

The k-core decomposition can be used to reveal structure in a graph.
It is straight-forward to implement using a centralised algorithm
with complete knowledge of the graph, but no distributed k-core
decomposition algorithm has been published. We present a con-
tinuous, distributed, k-core decomposition algorithm for dynamic
graphs, outline a proof of correctness, and give initial performance
results. We briefly describe an application of this distributed k-core
algorithm to landmark selection for compact routing.
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G.2.2 [Graph Theory]: Graph Algorithms
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1. INTRODUCTION
Graph decomposition is widely used for analysing the structure

of social networks, for network visualisation, in developing new
routing algorithms, and in other applications. Many of the networks
to be analysed are large and/or geographically distributed. This has
led to interest in distributed algorithms for graph decomposition.

The k-core decomposition algorithm [1] can reveal a central,
well-connected, core of nodes in a graph; the kmax-core or nu-
cleus. Previous work [4] has shown that the nucleus of the Internet
Autonomous System (AS) graph is appropriate for use as a land-
mark set for Thorup-Zwick (TZ) compact routing [5]. However,
known algorithms for k-core graph decomposition are centralised
and unsuitable for use in a distributed routing protocol (indeed, it
is only recently that attention has been given to the k-core decom-
position of dynamic graphs [2]). In the following, we outline a
distributed algorithm for k-core decomposition of a dynamic graph.
We sketch proofs of correctness and convergence, and present initial
performance results. The availability of a distributed algorithm for
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Figure 1: k-core decomposition of a simple graph

k-core decomposition of the AS graph brings us one step closer to a
practical TZ compact routing protocol.

2. BACKGROUND
The k-core decomposition of a graph produces a sequence of

nested subgraphs of gradually increasing cohesion. Each node in
the graph is assigned to a sequence of cores, so that in a k-core each
node must have at least k other neighbours. The number k in this
context is then an indicator of the centrality in the network: nodes
within a higher k valued k-core are more central to the network than
the nodes outside of that k-core. An example is shown in Figure 1
with the k-cores labelled: all nodes are in the 1-core; a subset of
those are in the 2-core; and two disjoint subgraphs form the 3-core.

Algorithm 1 Graph-centric k-core algorithm

1: k ← 0
2: Gk ← G

3: while |Gk| > 0 do
4: while {n ∈ Gk : k > |deg(n)|} $= ∅ do
5: Gk ← Gk \ {n ∈ Gk : k > |deg(n)|}
6: end while
7: Gk+1 ← Gk

8: k ← k + 1
9: end while

A k-core of a graph, G, is formally defined as follows: “If H is a
subgraph of G, δ (H) will denote the minimum degree of H; each
point of H is thus adjacent to at least δ (H) other points of H . If H
is a maximal connected (induced) subgraph of G with δ (H) ≥ k,
we say that H is a k-core of G.” [3]

The k-core decomposition of a graph is the production of all
non-empty k-core sub-graphs. That is, the process of finding all
k-cores within the graph and determining the k-core membership
of each node. A k-core decomposition algorithm for static graphs
is shown in Algorithm 1. It starts by assigning all nodes, including
disconnected nodes, to the 0th-core. Then, it continuously removes
all 0-degree vertices (and their edges) from the graph until no more
such vertices remain; the remaining vertices form the k = 1 core.
Then, all 1-degree nodes are continuously removed, and so on, until



Algorithm 2 Distributed, relaxation-based k-core process

1: for all n ∈ N do
2: Sn ← deg // initialise k-value for each neighbour
3: end for
4: kt ← kbound (S)
5: SEND_TO_NEIGHBOURS(〈kt〉)
6: loop
7: t← t+ 1
8: for any n ∈ N do // wait for message
9: Sn = RECEIVE(n)

10: kt ← kbound (S)
11: if kt $= kt−1 then
12: SEND_TO_NEIGBOURS(〈kt〉)
13: end if
14: end for
15: end loop

there no nodes left to assign to further cores, and all k-cores are
known. This algorithm is centralised, acts on the full state of the
graph, and requires various intermediate graphs to be calculated. A
distributed implementation is difficult.

3. DISTRIBUTED K-CORE ALGORITHM
We present a distributed algorithm for calculating the k-cores

of a static graph in Algorithm 2. This is run in parallel on each
node, and relies on messages exchanged with the direct neighbours
of the node, N , for each n of which state Sn is maintained. This
state is initialised to the node’s degree, and updated as messages are
received from the neighbour.

When a message is received, a node then determines an upper-
bound on its maximal k-core, kbound (S), such that kbound (S)
is the maximal i such that at least i neighbours have an Sn of at least
i or greater. As information comes in from the nodes’ neighbours,
this kbound is progressively tightened, converging on the correct
value for the maximal k-core of the node. In essence, it is probing
for the highest set of values that satisfy the k-core condition across
the network.

Algorithm 2 can be shown to convergence on the correct maximal
k-core values for node, as follows:

1. Each node starts with its kbound greater than or equal to its
maximal k-core

2. If the kbound at any node is greater than the maximal k-core
of that node there must be a node whose kbound must change

3. The kbound calculated at each node can only decrease

4. No node can calculate a kbound lower than its maximal k-
core, if at all other nodes the kbound is greater than or equal
to the respective maximal k-core for that node

This shows the algorithm must stabilise on the correct result
(space constraints prevent us including the full proof).

We ran Algorithm 2 on annual snapshots of the Internet AS graph.
Figures 2(a) and 2(b) shows preliminary results of how convergence
time varies with the date of the AS graph, and the maximum k-core
present in the graph. Figure 2(c) shows how the aggregate number
of messages sent varies with the size of the AS graph.

4. APPLICATION TO DYNAMIC GRAPHS
The distributed k-core algorithm described in Algorithm 2 sup-

ports edge removal while running. Edge removal can only lower the
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Figure 2: Performance on static graphs

maximal k-core value of nodes, and the algorithm simply continues
with its decreasing search for those values.

To support the addition of edges, the algorithm must reset its
downward search. We extend the algorithm with a generation
counter, maintained across each node, included with each mes-
sage, and stored as part each node’s neighbour state. The kbound
function is modified to consider only values from neighbours whose
generation matches the local generation, and to use the local de-
gree as the value for neighbours whose generation does not match.
The generation is increased if a new link is added or if a neigh-
bour increases its generation. When the generation is increased, the
neighbour state is reset back to the degree. Thus, the distributed
algorithm effectively restarts itself in a distributed manner when
links are added.

5. DISCUSSION AND CONCLUSIONS
We presented a distributed k-core decomposition algorithm. Pre-

liminary results to show reasonable scaling behaviour on AS graph
snapshots. The k-core decomposition has been suggested as a means
to select landmark nodes for compact routing schemes [4] for the
Internet. The distributed algorithm presented here could be used to
implement such a scheme, and the results given suggest it would
scale and be practical.
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