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Abstract

This paper describes an FPGA-based system for IPsec
security of high-speed data across commodity IP networks.
To demonstrate the system, we have transmitted 890 Mbps
raw HDTV video across a commodity network, secured on
the fly with the IPsec protocol and AES encryption. Such
performance is impossible with software-only implementa-
tions, for full line-rate data overwhelms typical CPUs. This
is particularly true when cryptographic transforms are re-
quired, such as those required by the IP Security (IPsec)
protocol. This protocol processing overhead competes di-
rectly for CPU cycles against the applications trying to pro-
cess the high-speed data. We have developed an “intelligent
network interface” card based on Xilinx Virtex FPGAs for
the purpose of offloading arbitrary protocol processing bot-
tlenecks from the network stack. The network accelerator,
named “GRIP” (Gigabit-Rate IPsec), integrates seamlessly
into a standard Linux network stack to provide gigabit-rate
acceleration of network processing from any of the layers in
the stack.

1. Introduction

Bandwidth-intensive applications compete directly with
the operating system’s network stack for CPU cycles. One
such application that we have studied in previous research is
the distributed processing of uncompressed, high-resolution
video content (HDTV) over commodity IP networks [1]. In-
creasing the bandwidth available in the network infrastruc-
ture theoretically permits the application to process richer,
higher-resolution content. However in reality, the appli-
cation receives diminishing marginal returns from the in-
creased bandwidth, because the overhead of network pro-
tocol processing increases proportionally. This means that
fewer CPU cycles are available to process even more data.
Overall end-to-end performance depends on careful balanc-
ing of the throughput capacity for the application, operating

system, and network hardware.
This paper describes our efforts to add security features

to the HDTV application, using the high-grade encryption
of the IP security standard (IPsec) [2]. IPsec adds signif-
icant additional overhead to the protocol processing, be-
cause of the complexity of the cryptographic transforms re-
quired. These transforms overwhelm modern CPUs at high
line rates; IPsec benchmarks on current CPUs show maxi-
mum throughput of 40-90 Mbps, depending on the encryp-
tion algorithm used [3]. With 1 Gbps networks now stan-
dard and 10 Gbps networks well on their way, the sequen-
tial CPU clearly cannot keep up with the load of protocol
and security processing. By constrast, application-specific
parallel computers such as field-programmable gate arrays
(FPGAs) are much better suited to cryptography and other
streaming operations. This naturally leads us to consider
using dedicated hardware to offload network processing (es-
pecially cryptography), to balance the throughput capacity
of the system so that more CPU cycles can be dedicated to
the applications which use the data.

We have created a prototype of such a hardware-offload
system known as “GRIP” (Gigabit-Rate IPsec). The sys-
tem is a network-processing accelerator card based on Xil-
inx Virtex FPGAs. GRIP integrates seamlessly into a stan-
dard Linux implementation of the TCP/IP/IPsec protocols.
It provides full-duplex gigabit-rate acceleration of a vari-
ety of operations such as AES, 3DES, SHA-1, SHA-512,
and application-specific kernels. To the application devel-
oper, all acceleration is completely transparent, and GRIP
appears as just another network interface. The hardware is
very open and programmable, and can offload processing
from various levels of the network stack, while still requir-
ing only a single transfer across the PCI bus.

The GRIP hardware was used to accelerate the IPsec
security for the HDTV application. Video is captured in
an HDTV frame-grabber at 890 Mbps, packetized and sent
AES-encrypted across the network via a GRIP card. A GRIP
card on a receiving machine decrypts the incoming stream,
and the video frames are displayed on an HDTV monitor.
All video processing is done on the GRIP-enabled machines.



In other words, the offloading of the cryptographic trans-
forms frees enough CPU time for substantial video process-
ing with no packet loss on ordinary CPUs (1.3 GHz Pentium
III).

This rest of this paper describes the how the components
of the system - application, operating system, and hardware
- were combined and tuned to provide the high bandwidth.
We analyze the processing bottlenecks in the accelerated
system, and propose enhancements to both the hardware
and protocol layers to take the system to the next levels of
performance (10 Gbps and beyond).

2. HDTV Transport on Commodity Networks

One example of bandwidth-limited processing is distributed
processing of high-resolution video data such as HDTV. We
studied how this application could be performed on com-
modity networks, using hardware offload techniques to main-
tain a high-level of application throughput.

2.1. Background

High Definition Television (HDTV) is the next genera-
tion digital TV standard. It provides several high resolu-
tion formats with greater colour depth than standard tele-
vision signals, using a widescreen 16:9 aspect ratio. The
SMPTE-292M standard defines a format for universal ex-
change of uncompressed HDTV between various types of
HDTV equipment (e.g. cameras, encoders, VTRs, editing
systems, etc.) [4]. It is a 1.485 Gbps digital serial connec-
tion. It is widely used in studios and production houses, al-
lowing HDTV content to be delivered uncompressed through
various cycles of production, avoiding the artifacts that are
an inevitable result of multiple compression cycles. Once
production has been completed, the signal is compressed
with MPEG-2 [5, 6] and broadcast at a rate of 19.2Mbps.

This process is effective if production takes place within
a single facility. Often, however, production facilities are
distributed, and hence there is a need to transport uncom-
pressed content between sites. This is typically achieved by
running the SMPTE-292M bit-stream over a dedicated fibre
connection, but a more economical alternative is desirable.
We consider the use of IP networks for this purpose.

Standards for real-time transport of video over IP net-
works have reached relative maturity, with the dominant
protocol being the Real-time Transport Protocol, RTP [7, 8].
RTP provides media framing, timing recovery and loss de-
tection. It typically runs on UDP/IP networks, inheriting
their limitations: unreliable, best effort delivery. RTP appli-
cations have developed sophisticated strategies for dealing
with timing jitter and packet loss [9]. It is expected that a
system for delivery of HDTV over IP will use these to pro-
vide a robust service. Receivers use information in the RTP

headers to correct for packet loss, and to reconstruct media
timing.

2.2. Design and Implementation

The transmitter and receiver are dedicated Dell PowerEdge
2500 servers with dual 1.2GHz Pentium III Xeon proces-
sors, running Linux 2.4.18. They were chosen because they
have dual PCI bus interfaces: one used for video capture or
display, and one for network transmission. Performance on
systems with a single PCI bus is poor, due to bus contention
and bandwidth limitations. HDTV capture and playout was
via DVS HDstation cards [10]. These cards capture HDTV
into main memory from a SMPTE-292M link, and regener-
ate the SMPTE-292M output at the receiver.

The transmitter captures the video data, fragments it to
match the network MTU, and adds RTP protocol headers.
Video capture and packet assembly are performed in sepa-
rate threads (due to the blocking nature of the capture API).
The native data rate of the captured video signal is slightly
above that of gigabit Ethernet, so the video capture hard-
ware is programmed to perform color sub-sampling from
10 to 8 bits per component, for a video rate of 890 Mbps.
The receiver code takes packets from the network, reassem-
bles video frames, corrects for the effects of network timing
jitter, conceals lost packets, and renders the video. Both the
sender and receiver implement the complete RTP protocol
stack.

2.3. Performance Requirements

As noted previously, the video data rate (after colour sub-
sampling) is 890 Mbps. Each video frame is 1.8 million
octets in size. To fit within the 9000 octet gigabit Ethernet
MTU, frames are fragmented into approximately 200 RTP
packets for transmission. The high data and packet rates are
such that a naive implementation can saturate the memory
bandwidth. Accordingly, a key design goal is to avoid data
copies, so that the system can support the required data rate.
We implement scatter send and receive (implemented using
the recvfrom() system call with MSG PEEK to read the RTP
header, followed by a second call to recvfrom() to read the
data) to eliminate data marshalling overheads. We also of-
fload colour conversion to the display hardware, to avoid
extra processing.

Throughput of the system is limited by the interrupt pro-
cessing and DMA overheads. We observe a linear increase
in throughput as the MTU is increased, and require larger
than normal MTU to successfully support the full data rate.
This is shown in figure 1. Other application optimizations
were also required to meet the performance requirements,
including tuning of the RTP library. It is clear that the sys-



Figure 1. HDTV application throughput for vari-
ous MTU sizes

tem is operating close to the limit, and that using IPsec en-
cryption will not be feasible without hardware offload.

3. GRIP System Architecture

In order to address the protocol processing bottleneck,
and to make it possible to add IPsec security to the HDTV
transport application, we developed the extensible network
processing platform known as “GRIP” (Gigabit-Rate IPsec).
FPGAs were chosen as the core computational resource,
because they are particularly well-suited to highly parallel
forms of computation, such as those employed in most cryp-
tographic transforms. This section gives an overview of the
GRIP platform, followed by details on the hardware design,
firmware modules, and the integration with the operating
system.

3.1. GRIP System Overview

The overall GRIP system is diagrammed in figure 2. It
is a combination of an accelerated network interface card,
a high-performance device driver, and special interactions
with the operating system. The interface card is the SLAAC-
1V FPGA coprocessor board [11] combined with a custom
Gigabit Ethernet mezzanine card. The card has a total of
four FPGAs which are programmed with network process-
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Figure 2. GRIP system architecture

ing functions as follows. One device (X0) acts as a dedi-
cated packet mover / PCI interface, while another (GRIP)
provides the interface to the Gigabit Ethernet chipset and
common offload functions such as IP checksumming. The
remaining two devices (X1 and X2) act as independent trans-
mit and receive processing pipelines, and are fully programmable
with any acceleration function. For the HDTV demonstra-
tion, X1 and X2 are programmed with AES-128 encryption
cores. Because of the programmable nature of the GRIP
card, the hardware offload system is very open and extensi-
ble, such that various other offload functions can be easily
substituted or combined.

The GRIP card interfaces with a normal network stack.
The device driver indicates its offload capabilities to the
stack, based on the modules that are loaded into X1 and
X2. For example in the HDTV application, the driver tells
the IPsec layer that accelerated AES encryption is available.
This causes IPsec to defer the complex cryptographic trans-
forms to the hardware, passing raw IP/IPsec packets down
to the driver with all the appropriate header information
but no encryption. The GRIP driver prefixes each packet
with a special command header that indicates which of-
fload functions should be performed. The X0 device fetches
the packet across the PCI bus and passes it to the transmit
pipeline (X1). X1 analyzes the packet headers and secu-



rity prefix, encrypting or providing other security services
as specified by the driver. The packet, now completed, is
sent to the Ethernet interface on the daughter card. The re-
ceive pipeline is just the inverse, passing through the X2
FPGA for decryption. Bottlenecks in other layers of the
stack can also be offloaded with this “deferred processing”
approach.

3.2. Basic platform

The GRIP hardware platform provides an open, exten-
sible development environment for experimenting with 1
Gbps hardware offload functions. It is based on the SLAAC-
1V FPGA board, which was designed for use in a vari-
ety of military signal processing applications. SLAAC-1V
has three user-programmable Xilinx Virtex 1000 FPGAs
(named X0, X1 and X2) connected by separate 72-bit sys-
tolic and shared busses. Each FPGA has an estimated 1
million equivalent programmable gates with 32 embedded
SRAM banks, and is capable of clock speeds of up to 150
MHz. The FPGAs are connected to 10 independent banks
of 1 MB ZBT SRAM, which are independently accessible
by the host through passive bus switches. SLAAC-1V also
has an on-board flash/SRAM cache for storing FPGA bit-
streams, allowing for rapid run-time reconfiguration of the
devices. For the GRIP project, we have added a custom
1 Gigabit Ethernet mezzanine card to SLAAC-1V. It has a
Vitesse 8840 Media Access Controller (MAC), and a Xilinx
Virtex 300 FPGA which interfaces to the X0 chip through
a 72-bit connector. The Virtex 300 uses 1 MB of external
ZBT-SRAM for packet buffering, and performs common of-
fload functions such as filtering and checksumming.

The GRIP platform defines a standard partitioning for
packet processing, as described in section 3. As described,
the X0 and GRIP FPGAs provide a static framework that
manages basic packet movement, including the MAC and
PCI interfaces, as shown in figure 3. The X0 FPGA contains
a packet switch for shuttling packets back and forth between
the other FPGAs on the card, and uses a 2-bit framing pro-
tocol (“start-of-frame” / “end-of-frame”) to ensure robust
synchronization of the data streams. By default, SLAAC-
1V has a high-performance DMA engine for mastering the
PCI bus. However, PCI transfers for a network interface
are small compared to those required for the signal process-
ing applications targeted by SLAAC-1V. Therefore for the
GRIP system, the DMA engine was tuned with key features
needed for high-rate network-oriented traffic, such as dy-
namic load balancing, 255-deep scatter-gather tables, pro-
grammable interrupt mitigation, and support for misaligned
transfers.

With this static framework in place, the X1 and X2 FP-
GAs are free to be programmed with any packet-processing
function desired. To interoperate with the static framework,
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Figure 3. Diagram of GRIP system partitioning.

a packet-processing function simply needs to incorporate a
common I/O module and adhere to the 2-bit framing pro-
tocol. SLAAC-1V’s ZBT SRAMs are not required by the
GRIP infrastructure, leaving them free to be used by packet-
processing modules. Note that this partitioning scheme is
not ideal in terms of conserving resources - less than half
of the circuit resources in X0 and GRIP are currently used.
This scheme was chosen because it provides a clean and eas-
ily programmable platform for network research. The basic
GRIP hardware platform is further documented in [12].

3.3. X1/X2 IPsec Accelerator Cores

A number of packet-processing cores have been devel-
oped on the SLAAC-1V / GRIP platform, including AES
(Rijndael), 3DES, SHA-1, SHA-512, SNORT-based traffic
analysis, rules-based packet filtering (firewall), and intru-
sion detection [13, 14, 15]. For the secure HDTV applica-
tion, X1 and X2 were loaded with 1 Gb/s AES encryption
cores. We chose a space-efficient AES design, which uses a
single-stage iterative datapath with inner-round pipelining.
The block diagrams of our AES encryption/decryption units
operating in CBC and counter mode are shown in figure 4 a)
and b) respectively. The cores support all defined key sizes
(128, 192 and 256-bit) and operate in either CBC or counter
mode. Both units consist of only two pipeline stages, min-
imizing the utilization of FPGA resources. Because of the
non-cyclic nature of counter mode, the counter-mode cir-
cuit can maintain maximum throughput for a single stream
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of data, whereas the CBC-mode circuit requires two inter-
leaved streams for full throughput. For this reason, counter
mode was used in the demonstration system.

The AES cores are encapsulated by state machines that
read each packet header and any tags prefixed by the de-
vice driver, and separate the headers from the payload to be
encrypted / decrypted. The details of our AES designs are
given in [13]. We present FPGA implementation results for
the GRIP system in section 4.

3.4. Integrating GRIP with the Operating System

The integration of the hardware presented in the section
3.2 is a fairly complex task because, unlike ordinary net-
work cards or crypto-accelerators, GRIP offers services to
three layers of the OSI architecture: the physical, link and
network layers. To make a complex matter worse, the IPsec
stack - the main focus of current GRIP research - is located
in neither the network nor link layers. Rather, it could be
described as a link-layer component ”wrapped” in the IP
stack (figure 5). Thus care must be taken to provide a con-
tinuation of services even though parts of higher layers have
been offloaded.

For this study we used FreeSWAN, a standard implemen-
tation of IPsec for Linux [16]. FreeSWAN consists of two
main parts: KLIPS and Pluto. KLIPS (KerneL IP Security)
contains the Linux kernel patches that implement the IPsec
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protocols for encryption and authentication. Pluto negoti-
ates the Security Association (SA) parameters for IPsec-
protected sockets. Figure 5 illustrates the integration of
FreeSWAN into the system architecture. Pluto negotiates
new security associations (SA’s) using the ISAKMP pro-
tocol. When a new SA is negotiated, it is sent to the IPsec
stack via the pf key socket, where it is stored in the Security
Association Database (SAD). At this point, the secure chan-
nel is open and ready to go. At this point, the secure channel
is open and ready to transmit data. The IPsec stack registers
itself not only as a network protocol (protocol number 50,
[17]) but also as a network device with all its hooks attached
to the actual (in our case, GRIP) driver. Thanks to this vir-
tual device, IPsec presents itself as a routable interface. Any
time a packet is sent to an IPsec-protected socket, the IPsec
transmit function finds the appropriate SA in the database
and performs the required cryptographic transforms. Af-
ter this processing, the packet is handed back to IP which
passes it to the physical interface. The receive mode is es-
sentially identical but somewhat less complex. That said,
we have to point out that this scenario applies only to the
most common cases where a destination address is associ-
ated with one SA entry. In more complex cases, such as re-
cursive IPsec tunnels or multiple IPsec interfaces, the above
process can repeat many times.

In order to accommodate GRIP acceleration we made
three modifications. First, we modified Pluto so that AES
Counter mode is the preferred encryption algorithm for ne-
giotiating new SA’s. Second, we altered the actual IPsec
stack so that new SA’s are communicated to the GRIP de-
vice driver using the driver’s private space. The driver then
caches the security parameters (encryption keys, etc.) on



the GRIP card for use by the accelerator circuits. Finally,
the IPsec transmit and receive functions were slightly modi-
fied to produce proper initialization vectors for AES counter
mode. Any packet associated with an AES SA gets pro-
cessed as usual - IPsec headers inserted, initialization vec-
tors generated, etc. The only difference is that the packet
is passed back to the stack without encryption. The GRIP
driver recognizes these partially-processed packets and tags
them with a special prefix that instructs the card to perform
the encryption, then queues the packets for DMA transfer.

4. Results

4.1. System Performance

In order to characterize the system performance we have
set up both symmetric multiprocessor (SMP) and unipro-
cessor (UP) systems, and measured their performance while
running either the iperf application [18] or the HDTV pro-
cess described in section 2. Each combination was run for
120 seconds, and both the receiver and transmitter were pro-
filed. Transmitter and receiver profiling results are com-
parable, therefore only the transmitter results are presented
for brevity. In both cases the hardware was identical - a
Dell PowerEdge 2500 server (2x1.3GHz) with SMP and UP
Linux kernels. The profiler used in our experiments was
oprofile [19]. Oprofile leverages the hardware performance
counters of modern CPUs. Each time the selected counter
reaches a preset value, a non-maskable interrupt is issued
and a sample taken. The sample indicates which instruction
was being executed at the time of the interrupt. The profiler
maps these samples ot the symbol table, and constructs a
plot of the CPU time spent executing in particular libraries
or functions.

The HDTV application achieved full-rate transmission
with no packets dropped. Even though the CPU was clearly
not overloaded (idle time > 60%!), stress tests such as run-
ning other applications showed that the system was at the
limits of its capabilities. Comparing the SMP and UP cases
under iperf, we can see that the only change (after taking
into account the 2X factor of available CPU time under
SMP) is the amount of idle time. Yet in essence, the per-
formance of the system was unchanged.

To explain these observations, we consider system mem-
ory bandwidth. We measured the peak main memory band-
width of the test system to be 8 Gbps with standard bench-
marking tools. This means that in order to sustain giga-
bit network traffic, each packet can be transfered at most
8 times to/from main memory. We estimate that standard
packet-processing will require three memory copies per packet:
from the video driver’s buffer to the hdtv application buffer,
from the application buffer to the network stack, and a copy
within the stack to allow IPsec headers to be inserted. The
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large size of the video buffer inhibits effective caching of
the first copy and the read-access of the second copy; this
means these copies consume 3 Gbps of main memory band-
width for 1 Gbps network streams. Three more main mem-
ory transfers occur in writing the video frame from the cap-
ture card to the system buffer, flushing ready-to-transmit
packets from the cache, and reading packets from memory
to the GRIP card. In all, we estimate that a 1 Gbps net-
work stream consumes 6 Gbps of main memory bandwidth
on this system. Considering that other system processes are
also executing and consuming bandwidth, and that the ran-
dom nature of network streams likely reduces memory effi-
ciency from the ideal peak performance, we conclude that
main memory is indeed the system bottleneck. Also note
that memory allocations are two orders of magnitude more
expensive in SMP kernels than in UP kernels. All of this
explains why the UP system sees only an insignificant de-
crease in performance even while saturating the CPU.

In summary, these results suggest that while the CPU
and system bus resources of current middle and high-end
systems are more than sufficient, it is the memory band-
width which will create a critical bottleneck as demand-
ing applications try to scale to higher network rates. In
many of these cases, CPU-level caches are irrelevant, be-
cause of the large and random nature of the data streams.
While chipset technology improvements help by increasing
available bandwidth, performance can also greatly improve
by reducing the number of memory copies in the network
stack. For a system such as GRIP, three significant improve-
ments are readily available. The first and most beneficial is
a direct DMA transfer between the grabber/display card and
the GRIP board. The second is the elimination of the extra
copy induced by IPsec, by modifying the kernel’s network
buffer allocation function so that the IPsec headers are ac-
comodated. The third approach is to implement the zero-
copy socket interface. While this is a very efficient modi-
fication, it would require significant changes in the kernel
code and architecture. Clearly all these improvements are
not cumulative - i.e. one cannot reduce the number of re-
quired memory copies by three. However any combination
of such would reduce it by two and significantly improve
the system’s performance.

4.2. Evaluating hardware implementations

Results from FPGA circuit implementations are shown
in figure 8. As shown in the figure, the static packet-processing
infrastructure easily meets the 1 Gbps system bandwidth re-
quirement. These designs should scale with relative ease to
multi-gigabit rates by doubling the datapath to 64-bit (cur-
rently 32) and circuit optimization. Also note that the Virtex
FPGA family is currently five years old, so further speedup
could easily be achieved simply by using newer hardware.

The most tightly-constrained circuits on the GRIP card are
the cryptographic accelerators, as shown. The AES counter
mode circuit could easily scale in frequency by partially un-
rolling the processing loop. Cyclic operations such as AES
in CBC mode or SHA would require more aggressive tech-
niques such as more inner-round pipelining and interleav-
ing of data streams. Note that there are more than enough
resources on the current system to combine both AES en-
cryption and a secure hash function at gigabit speeds.

5. Related Work

Since IPsec software implementations pose a substan-
tial burden on system resources, hardware accelerators have
been in development since the dawn of the IPsec standard.
Most approaches could be divided into two categories: stand-
alone, dedicated hardware platforms (VPN gateways) and
crypto-accelerators. The former approach is limited in that
it only provides security between LANs with matching hard-
ware (datalink layer security), not end-to-end (network layer)
security. The host-based crypto-accelerator reduces the CPU
overhead by offloading cryptography, but overwhelms the
PCI bus at high data rates. A few commercial products exist
with integrated cryptography on a network interface, such
as products from Hifn [20] and Corrent [21]. GRIP differs
from these approaches in that it is a reprogrammable, full
system solution, integrating accelerator hardware into the
core operation of the standard TCP/IP network stack.

A number of other efforts have demonstrated the useful-
ness of dedicated network processing. These efforts have
shown that an embedded processor on the network interface
can enhance parallel computing by improving bandwidth or
latency or by adding special features. Examples of these ef-
forts include HARP[22], Typhoon[23], RWCP’s GigaE PM
project[24], and the University of British Columbia’s GMS-
NP project[25]. Each of these efforts relies on embedded
processor(s) and only attempts to achieve peak data rates
with unencrypted data in a single direction on the network.
The goal of GRIP, by contrast, is to achieve simultaneous
bi-directional gigabit throughput with encryption or other
complex inline processing. For this, additional processing
power is needed on the network interface.

We are aware of two other systems for transport of (mostly)
uncompressed HDTV over IP. In conjunction with Tektronix,
Inc., we have designed an RTP payload format that allows
a SMPTE-292M circuit to be emulated over an IP network
[26], using FPGA-based OC48 network hardware. A sim-
ilar system, using custom network interfaces, has been im-
plemented by NTT labs [27]. Neither system supports IPsec.



Design CLB Util. BRAM Util Pred. Perf. Measured Perf.
(MHz / Gbps) (MHz / Gbps)

X0 47% 30% PCI: 35 / 2.24 33 / 2.11
I/O: 54 / 1.73 33 / 1.06

X1 / X2 (AES) 17% 65% CORE: 90 / 1.06 90 / 1.06
I/O: 47 / 1.50 33 / 1.06

GRIP 35% 43% 41 / 1.33 33 / 1.06
Other modules:
3DES 31% 0% 77 / 1.57 83 / 1.69
SHA-1 16% 0% 64 / 1.00 75 / 1.14
SHA-512 23% 6% 70 / 0.93 81 / 1.04

Figure 8. Summary of FPGA performance and utilization on Virtex 1000 FPGAs

6. Conclusions and future work

This HDTV broadcast application is representative of a
class of bandwidth-limited distributed processing problems,
which could theoretically benefit from greater available band-
width but are hampered by the operating system overhead
of marshalling all the data. Network performance is cur-
rently doubling every eight months [28]. Modern CPUs, ad-
vancing at the relatively sluggish pace of Moore’s Law, are
falling further and further behind in their ability to supply
full line-rate data to such applications, most notably when
cryptographic security protocols are used. This disparity be-
tween network bandwidth and CPU power will only worsen
as these trends continue. In this paper we have proposed an
accelerator architecture that attempts to resolve these bottle-
necks now and can scale to higher performance in the future.
The unique contributions of this work are not the individual
processing modules themselves; for example, 1 Gbps AES
encryption has been demonstrated by many others. Rather,
we believe the key result is the full system approach to in-
tegrating accelerator hardware directly to the network stack
itself. The GRIP card is capable of completing packet pro-
cessing for multiple layers of the stack. This gives a highly
efficient coupling to the operating system, with only one
pass across the system bus per packet. We have demon-
strated this system running at full 1 Gbps line speed with
end-to-end encryption on commodity PCs. This provides
significant performance improvements over existing imple-
mentations of end-to-end IPsec security.

We would like to investigate other general-purpose of-
fload capabilities on the current platform. A 1 Gbps secure
hash core could easily be added to the processing pipelines
to give accelerated encryption and authentication simulta-
neously. More functions could be combined by using the
rapid reconfiguration capabilities of SLAAC-1V to switch
between a large number of accelerator functions on-demand.
Packet sizes obviously make a big difference - larger pack-
ets mean less-frequent interrupts. The GRIP system could
leverage this by incorporating TCP/IP fragmentation and re-

assembly, such that PCI bus transfers are larger than what is
supported by the physical medium. Finally, several application-
specific kernels could be made specifically for accelerat-
ing the HDTV system, such as RTP processing and video
codecs.

Our results suggest that as we look towards the future
and consider ways to scale this technology to multi-gigabit
speeds, we must address the limitations of system mem-
ory bandwidth. At these speeds, CPU-level caches are of
limited use because of the large and random nature of the
data streams. Future work in implementing the main mem-
ory bandwidth optimizations suggested in section 4 could
potentially have the greatest impact on end-to-end system
bandwidth.

FPGA technology is already capable of multi-gigabit net-
work acceleration. 10-Gbps AES counter mode implemen-
tations are straightforward using loop-unrolling [29]. Cyclic
transforms such as AES CBC mode and SHA will require
more aggressive techniques such as more inner-round pipelin-
ing, interleaving of data streams, or even multiple units in
parallel. We believe that 10 Gbps end-to-end security is
possible with emerging commodity system bus (e.g. PCI
Express), CPU, and network technologies, using the offload
techniques discussed.
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