A NEW MARKOV MODEL FOR DEPENDABILITY AND TEMPORAL
EVALUATION OF HARD REAL-TIME SYSTEMS

CS Perkins and AM Tyrrell
Department of Electronics, University of York
Heslington, York, YO1 5DD, UK
Email: {csp|amt}@ohm.york.ac.uk

ABSTRACT

We present a new reliability model for hard real-time
systems. This model uses a generic high-level formal-
ism based upon a Markov chain with a lattice structure
which represents the progress of a computation, allow-
ing both functional and time correctness of the system
to be modelled. This is an improvement on traditional
system reliability models which typically focus on func-
tional correctness, and do not adequately model the
temporal properties of such systems. We provide an
example of the application of this model to a recovery
block system, and show that a number of important
metrics may readily be derived from these results. We
note an unusual feature of the failure profile data, from
which we hope to derive measures of the independence
of the alternates in a recovery block system.

INTRODUCTION

Reliability models for fault-tolerant systems are typ-
ically based around a probabilistic process which de-
scribes the system, either neglecting execution time
information, or providing a partial ordering of events
only. These models allow the failure probability for
a particular system to be calculated, but do not pro-
vide for calculation of the timing properties of the sys-
tem. The usefulness of this class of model must hence
be questioned when applied to hard real-time systems,
since such systems require both temporally and func-
tionally correct behaviour.

In this paper we propose a new system reliability model
for a generic hard real-time system. This is a discrete
Markov model with a lattice structure that models the
progress of a computation from its initial state to one
of several final states: completed, detectable fault, hid-
den fault, and failed. Our model allows for both func-
tional and temporal behaviour of a system to be repre-
sented in a single high-level model; and is derived from
generic properties of hard real-time systems; hence be-
ing independent of any specific design/implementation
technique for such systems.

The remainder of this paper is structured as follows:
We begin with a description of our new system model,

and a discussion of how this may be used to analyse sys-
tem behaviour. This is then illustrated by application
to a recovery block system, and a number of interesting
results are derived. We then summarise these results,
and give pointers to further research.

SYSTEM MODEL

In order for a system to be classified as hard real-time it
must obey certain properties. In particular, the system
must have well-defined execution time bounds, and the
probability of the system exceeding those bounds must
be known. Given this information, and in the absence
of faults, such a system may be modelled as a simple
Markovian state chain with probabilistic transition to
a completed state (figure 1).

Such a model is, of course, overly simplistic and must
be extended in order to account for the presence of
faults within the system. We divide such faults into
two classes: (1) Those which cause run-time errors and
so are detectable before normal system completion; and
(2) those faults which do not cause such errors, and so
can only be detected by examining the final system
state.

The first such class of fault may be modelled by the
addition of a detectable fault state to the Markov model
describing the system. A transition is made from each
state in the basic state chain to this detectable fault
state, with probability determined as discussed below

(figure 2).

The second class of fault leads to a more complex
model, requiring a parallel state chain to represent a
system which is still functioning, but with a hidden
fault. These parallel states mimic the function of the
original state chain, and lead to the hidden fault and
failed states (figure 3).

This then is our final model definition, comprising two
parallel state chains, representing normal execution and
execution with a hidden fault. These are interconnected
with a lattice structure which models hidden fault oc-
currence and recovery. In addition a further two states
are added to the lattice in order to represent run-time
detectable faults. Standard Markovian analysis may
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Figure 2: System model with detectable faults

then be performed to derive the system probability dis-
tribution amongst these states.

Our model may therefore be used to determine both
the functional and the temporal correctness of a sys-
tem. The functional correctness is indicated by the
probability distribution of the system between the four
final states of our model: completed, detectable fault,
hidden fault, and failed. The temporal correctness is
indicated by plotting the timing profile to show the
distribution of these probabilities with respect to time.

Implicit in the above discussion has been the precise na-
ture of the transition probabilities of the lattice model.
We divide these into four categories:

Probability of completion, p.. This is the proba-
bility that the system completes execution at any
given time step. It is independent of the occur-
rence of faults, and must be derived from knowl-
edge of the algorithm used by the process and/or
test data. This is the transition probability for
the arcs leading to the completed and hidden fault
states.

Probability of detectable fault, p;. The probabil-
ity that the system fails in such a manner that can
be detected before the normal completion. It may
be estimated from test data, or from experience
with similar systems. This is the transition prob-
ability for arcs leading to the detectable fault and
failed states.

Probability of hidden fault, py. This is the proba-
bility that a fault occurs which does not give rise to
an error detectable at run-time. Such a fault may
be detected after completion of the process, and
hence may be estimated based on the results of a
system acceptance test. This probability, together
with the probability of hidden recovery, defines the
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Figure 3: System model with hidden faults

transition probabilities on the arcs interconnecting
the two main state chains of our model.

Probability of hidden recovery, p,.. The probabil-
ity that the system recovers silently from a hidden
fault. May be estimated in a similar manner to the
probability of a hidden fault.

With the exception of the completion probability, p.,
these transition probabilities are expected to be uni-
form, and to follow a random-fault model (Laprie and
Kanoun, 1992; Musa, 1979; Perkins and Tyrrell, 1995).

It can therefore be seen that the parameters required by
our model may readily be estimated based on test data
from a real system. Our model is therefore of use in a
predictive role: Given preliminary test data for a com-
ponent we derive a reliability and timing prediction. A
number of these may then be combined to predict the
behaviour of an entire system.

For example, a hard real-time system may be composed
of a number of components, such as recovery blocks,
which combine to form a complete system. Each of
these components will comprise a number of alternates.
It is envisaged that the model described herein is suit-
able for application at the level of the individual al-
ternate of the recovery block or other such structure.
This will enable timing properties for the entire fault
tolerant structure, and hence the complete system, to
be derived.

APPLICATION EXAMPLE

The recovery block (Randell, 1975) is a technique which
uses multiple versions of a program block to attempt to
ensure success in the presence of system failures. The
first version is known as the primary and the second
and subsequent versions are known as alternates. The
primary is executed, and an acceptance test evaluated.
If this fails, the alternates are executed in series until
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5: Recovery Block Model

Figure

one succeeds. In order for the entire system to op-
erate successfully under hard real-time constraints, it
is necessary for each alternate to operate under such
constraints. Each alternate in the recovery block may,
therefore, be viewed as a generic hard real-time system,
and the model developed herein is applicable. In order
to model the full recovery block, an acceptance test
model is also required. This must map from the out-
put states of the alternate to the final pass/fail states.
A generic acceptance test will be fallible, that is, it will
not correctly classify all systems, and will take a finite
amount of time. For reasons of simplicity and tractabil-
ity of the analysis, the test modelled here will, however,
be assumed infallible (Csenki, 1993), and will take uunit
time. The study of systems with fallible acceptance
tests is the subject of current research. This combined
alternate and acceptance test model is illustrated in
figure 4.

Several such systems may be combined in order to
model a complete recovery block. This is illustrated
in figure 5 for a recovery block consisting of a primary
and two alternates.

In order to illustrate the applicability of our model,
a system such as that in figure 5 has been analysed.
For the purpose of this example, the primary and the
two alternates were selected as follows (The completion
probabilities for these systems are illustrated in figure

6):

Primary. A slow but reliable system, where the com-
pletion probability increases with time.
ample some form of iterative solution or stepwise
refinement technique.

For ex-
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Figure 6: Basic Alternate Completion Profiles

rr | e |
Primary 0.001 | 0.001
1st Alternate | 0.010 | 0.010
2nd Alternate | 0.010 | 0.005

Table 1: Alternate Parameters

System | 1st | 2nd | 3rd
RB1
RB2
RB3
RB4
RB5
RB6
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Table 2: Alternate Orderings

1st Alternate. A fast but unreliable system. For ex-
ample a naive linear interpolation algorithm ap-
plied to a somewhat nonlinear system.

2nd Alternate. A reliable, medium speed system.
The completion profile of this system follows a
“bell-shaped” curve. For example an algebraic so-
lution to a set of equations, where the completion
time is somewhat data dependent.

There are three other parameters to the alternate
model: Probability of detectable fault, pg; probability
of hidden fault, py; and probability of hidden recov-
ery, pr. In these tests py and p, will be fixed for each
alternate (see table 1), and pg will be varied between

0.00001 and 0.10000.

In a recovery block system with three alternates there
are a total of six possible orderings of the execution
of these alternates. These orderings are shown in ta-
ble 2. The behaviour of the recovery block system
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Figure 8: System Completion Probability, pg = 0.05000

has been simulated for all possible alternate orderings
and a range of different forward failure probabilities.
This leads to a large number of plots of system comple-
tion/failure probability vs. time. This data may then
be analysed to determine a number of system perfor-
mance metrics.

As might be expected, the ordering of the execution
of the alternates and the forward failure probability
has a large effect on the recovery block completion
profile. Consider the data shown in figures 7 and 8:
Figure 7 shows a system where the failure rate is low
(pa = 0.00001), and the alternates are executing al-
most sequentially, with failures occuring almost entirely
due to time overrun. Since each alternate has a unique
completion profile, we see the system completion profile
change, depending on the ordering of the alternates. It
can be seen that this ordering has no effect on the over-
all system completion probability, but does affect the
time at which the system is likely to complete: The cu-
mulative completion probability increases at different
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Figure 9: Instantaneous System Failure Probability
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rates for the different alternate orderings.

Similar results are obtained for systems with greater
failure rates, for example figure 8 with pg; = 0.05000.
Such systems exhibit a reduced overall completion
probability, as is expected due to the greater failure
rate; and also show a greater divergence between the
different alternate orderings. That is, a greater failure
rate makes the ordering of the alternates more impor-
tant for determining the system’s completion time.

From information such as this a number of important
system metrics may be derived, such as system comple-
tion probability, and hence reliability; and mean com-
pletion time. Accurate knowledge of a system’s comple-
tion profile will also allow derivation of more optimistic
scheduling strategies, which utilise a knowledge of the
system’s expected execution time bounds to derive a
more efficient schedule than that possible by applying
worst-case bounds.

In addition to this completion profile data, it is also



possible to derive system failure profile data (figures 9
10). Such data shows a very interesting feature: For
a given failure rate the system failure profile is fixed,
independent of the order of execution of the alternates.
At first, this appears surprising: since the completion
profile of the system changes with the differing order-
ings of alternates, the failure profile might reasonably
be expected to do so too. In practice this is not so,
due to a fundamental assumption of the recovery block
model. This model assumes that the alternates com-
prising the recovery block system are independent; that
is the performance of an alternate measured in isola-
tion is the same as its performance when used in the
recovery block. With this in mind, it becomes less sur-
prising that the failure profile for the recovery block
system is identical regardless of the order of execution
of the alternates: If each alternate is regarded as a func-
tion transforming an input signal, then whatever order
those “black-box” functions are combined the result is
the same.

A number of studies have been conducted into the inde-
pendence of the versions in multiversion software, (Eck-
hardt and Lee, 1985; Knight and Leveson, 1986). From
these studies, it is clear that the alternates in a mul-
tiversion system cannot be assumed independent, and
coincident errors are likely. This would imply that the
reliability of an alternate fed only those input points
on which the previous alternate has failed, is likely to
be worse than the reliability of the same alternate fed
a random selection of input points.

This has important consequences for the model pre-
sented above, since if the failure profile of an alternate
changes depending on the ordering of the alternates,
then the failure profile of the system as a whole will
change accordingly. This leads to a potential method
of measuring the degree of independence between the
alternates in a recovery block system, by measuring the
deviation of the system failure profile as the ordering
of alternates is varied. This is the subject of current
research.

SUMMARY AND CONCLUSIONS

To summarise; it has been noted that current reliability
models are not sufficient for use in hard real-time sys-
tems design, since they do not adequately model the
temporal properties of such systems. We propose a
new model to overcome these limitations. This new
model uses a generic high-level formalism based upon
a Markov chain with lattice structure which represents
the progress of a computation with respect to both time
and functional correctness. We provide an example of
the application of this model to a recovery block sys-

tem, and show that a number of important metrics may
readily be derived from these results.

One limitation of our recovery block model is that it
assumnes independent behaviour of alternates. For sys-
tems where this is not the case, we hope to extend our
model to utilise the variation in failure profile data to
derive a measure of the coupling between the alternates.
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