
�

Reliability Models for Hard Real�Time

Systems

CS Perkins AM Tyrrell

Department of Electronics� University of York

Heslington� York� YO� �DD� UK�

Abstract

We present a new reliability model for hard real�time systems�
This is an extended Markov model� derived from an analysis of
the generic properties of hard real�time systems subject to a sim�
ple random�fault model� Our model permits analysis of the run�time
behaviour of a system� in order to derive the probability pro�les of
the system�s completion�failure times� The model is applied to the
analysis of a simple sequential recovery block system� and illustrative
examples based on this system are provided� The paper concludes
with a discussion of the application of such accurate completion pro�
�le information to the design of embedded software systems�

Keywords� Real�time system� Recovery block� Markov model�
completion probability pro�le�

� Introduction

Before fault�tolerant features can sensibly be applied to a system� there is a
need to determine the e�ects they have on the reliability and failure modes
of the system as a whole� In particular� it is important that an accurate
failure�reliability model is available during the design of fault�tolerant and
safety critical systems� whether those systems comprise hardware� software
or some combination of the two� This paper will describe a new approach
to reliability modelling for embedded software systems� with emphasis on
the applicability of this technique to hard real�time safety critical systems�

The reliability models which have been developed in the literature may
be split into two groups� Functional models which describe the system
from a time�independent viewpoint� and dynamic models which describe
the run�time behaviour of a system� Time�independent models ��� �� �	�
��
are typically based around a Markov�chain or other probabilistic process
which is used to describe the behaviour of the system either neglecting in�
formation about execution time or providing a partial ordering of events
only� Such models enable the probability of failure for a particular struc�
ture to be calculated� but do not provide for the calculation of the timing

properties of the system� Whilst this is undoubtably of value� its usefulness
in the analysis of hard real�time systems must be questioned� since these
systems require not only functionally correct behaviour� but also temporally

correct behaviour� The timing properties of a hard real�time system are
as important as its functional properties in ensuring correct operation and�
unfortunately� this class of model is not able to describe this with su�cient
rigour�

In contrast� time�dependent models are much less well developed �
� ���
Although some work has been conducted into �nding algorithms to derive
the mean execution time of a set of processes in the presence of failure
�
��� there has been little work undertaken to determine the probability
distribution of the system�s execution time� Much of the research conducted
with hard real�time systems has focussed on scheduling problems �
� 	� ���

�

�� and typically requires knowledge of the execution time bounds of a
process to enable e�cient schedules to be calculated� With the introduction
of fault�tolerant procedures� the execution time bounds of the system will
change� It is therefore important that a means of deriving an expression
for the execution time of a system with fault�tolerant processes is found�
and it is this problem which is addressed in this paper�

It is therefore noted that� �� Whilst time�independent reliability models
are useful� they do not address a number of important problems which must
be resolved before these techniques will be of use in designing hard real�
time systems� and
� It is of great importance to be able to derive the
probability distribution of process completion times� in order to have some
means of developing an execution schedule to meet all required deadlines�
even in the presence of failures and error recovery�

Taken together these points illustrate a problemwith current approaches
to designing hard real�time systems� It is usual for the timing properties of
a hard real�time system to be abstracted away so as to give each process a
maximum execution time� Provided such a maximum time can be assigned
to each process� it is then possible to devise scheduling algorithms which�
given su�cient resources� will ensure that all deadlines are met� These
algorithms are� however� pessimistic because they rely on the upper bound
of a process� execution time� where as in real�systems� the probability of
errors occurring is low and the execution time of most processes is typi�
cally much less than the maximum� The system therefore operates with
much slack�time� implying low e�ciency but high reliability� The thesis of
this paper is that� if the probability distribution of the process� execution
times is known� it is possible to design a system which relys on this to
attain much improved e�ciency� whilst still managing to operate within a
tolerable level of risk�

The remainder of this paper is split into the following sections� Section

 describes the motivation behind this work� and places it in the context
of other published literature� Sections � and
 describes the underlying

�

mathematical model used as a basis for the work� whilst sections � and �
describe the application of this to the modelling of a sequential recovery
block structure� Finally section � summarises the work�

� Background

It is desired to model the execution of a system in such a manner that the
probability distribution of the execution time can be determined� together
with the system reliability� This section will propose a scheme by which
this can be accomplished�

A number of experimental studies have been conducted into the failure
characteristics of software systems ���� ���� These studies� together with
theoretical results such as those presented in ��� ��� �
� ��� �
� seem to
indicate that it is possible to achieve a reasonably accurate prediction of the
failure characteristics of a software system using very simple models� and
indeed� it has often been proposed that a random�fault model will su�ce�
Such a model is of use because of its ease of application and similarity to
hardware reliability models� allowing similar techniques to be applied to
the modelling of both hardware and software�

The notion of software faults occurring randomly is not intuitively obvi�
ous� In particular� a software system is typically thought of as being purely
deterministic � given a speci�c set of inputs a certain output will arise� and
that same output will arise whenever that set of inputs is presented to the
system� How can such a system conform to a random�fault model�

The simple answer is� of course� that it cannot� However� it can be seen
that although the underlying faults do not occur randomly� their manifes�
tation can appear to follow the random�fault model� A typical embedded
control system will comprise a set of interacting software processes� to�
gether with a number of hardware devices� Interactions occur not only
between software processes� but also between software processes and hard�
ware devices and between hardware devices� In addition� interactions may
occur between di�erent parts of the system due to the �ow of information
through the external environment� This is illustrated in �gure ��

The software comprising an embedded system such as this will have
a large input space� It is directly a�ected by software�software interac�
tions and software�hardware interactions and also indirectly a�ected by
hardware�hardware interactions and the in�uence of the external environ�
ment� As the number of inputs to the system increases� and more and
more external devices are included� it becomes increasingly di�cult to de�
termine the system boundary and the number of possible interactions in�
creases rapidly� Furthermore� it is typical that embedded systems have a
temporal dimension to their input space� Identical inputs may well produce
di�erent outputs at di�erent times�

Hardware Subsystem

Software Subsystem

Information flow through environment External Environment

Figure �� The structure of a typical embedded control system

It can readily be seen that� for all but the simplest of systems� the
input space is so large� and the interactions which occur are so subtle and
complex� that it is e�ectively impossible to predict the path the system
will take through its input space ����� From the above arguments� it seems
reasonable to model the system�s path through its inputs as a random�walk
in a multi�dimensional space� This is transformed by the system to provide
a path through the output space which is necessarily also modelled as a
random walk� This is illustrated in �gure
�

Embedded SystemInput Space Output Space

Fault Space

Figure �� Random walk through the system�s input space

There are typically a number of points in the input space which will

�

give rise to faults in the system� and those faults may� eventually� cause
errors to manifest themselves� Such errors� if untreated� may cause system
failures� It is noted that faults which are close in the input space will not
necessarily give rise to faults which are close in the output space�

This then is the basis for the system model to be used in this paper�
It will be assumed that the system�s input space is su�ciently large� and
the tasks to be undertaken su�ciently complex� that a random�fault model
such as this is applicable� It is considered that such an assumption is not
unrealistic� indeed it is the basis for a number of other models ��
� ��� �
��
and certain experimental data ��� ��� has been collected which appears to
con�rm the validity of this approach� The work conducted by Laprie ����
also lends support to this� when it is noted that

����the constancy of the hazard rates� although it is an a priori

unrealistic hypothesis� turns out to be satisfactory��

It is further noted that a study made of the reliability logs of Tandem
systems ��� provides evidence for this claim� as indeed does the work of
Musa at Bell Labs ��
� ���� and that of the European Space Agency ����
where it is noted that

�Software failure is a process that appears to the observer to
be random� therefore the term reliability is meaningful when
applied to a system which includes software and the process
can be modelled as stochastic��

It can therefore be seen that the random�fault model as applied to software
and combined hardware�software systems provides a reasonable �t with
experimental data with a relatively simple theoretical background�

� Underlying Mathematical Model

The underlying mathematicalmodel detailed here is a stochastic model� de�
rived primarily from Markov chain theory �
��� with modi�cations to allow
for simple process interactions� The underlying network model borrows a
number of concepts from Petri net theory ����� not least the notation used�
Despite the notational similarities� however� this is primarily a Markov
model� not a Petri net system�

The basis of the model comprises a multi�graph consisting of a set of
places and a set of transitions connected by directed arcs� The system
state is de�ned by the probabilistic distribution of a set of tokens amongst
these places� Changes in the system state are indicated by movement of
tokens along these arcs� from place to place by means of the intermediate
transitions� All tokens move at once� in step�time� A transition cannot

�

�re until it has a token in each of its input places� and when it does �re it
sends a single token to one of its output places� determined probabilistically
by the transition probabilities labelled on the arcs leading away from the
transitions� A place may have multiple input arcs and hence� may receive
multiple tokens� A place will output a token down each of its output arcs�
A place will therefore create or destroy tokens as required�

Simple Transition Probabilistic Transition Synchronisation Parallel Execution

Figure �� Basic modes of execution

The basic modes of execution of the model are shown in �gure �� The
simple transition and probabilistic transition modes correspond to a stan�
dard Markov chain model� Tokens are neither created or destroyed� In
these modes the system shows multiple possible paths of execution � it
can perform one action from a choice of many possibilities � this is mod�
elled as a transition with multiple output arcs�

A system which permits concurrent execution of multiple paths is also
possible� and is modelled by a place with multiple output arcs� This is the
parallel execution mode� and shows token creation� Further� it is possible
to model synchronisation among these concurrent processes by means of
transitions with multiple input arcs� Such transitions cannot �re until all
their input places contain tokens� and so they introduce synchronisation
into the execution of the system� and destroy excess tokens�

It is the ability to model both probabilistic and concurrent execution
with ease which sets this model apart from traditional Markov models�

A formal de�nition of this model is provided in section
� whilst details
of the application of this model to problems in real�time system design are
discussed in sections � and ��

� Formal de�nition of the model

��� Basic Network Model

The basis of the model is a set of places with probabilistic movement of
tokens between them� This is de�ned by a four�tuple

C � ��� � I� O� �
���

�

where

� � � f��� ��� � � � � �ng is a �nite set of places with n �
 representing
the system state�

� � f��� ��� � � � � �mg is a �nite set of transitions with m � �� repre�
senting the possible movements between states�

� The input function� I� and the output function� O� de�ne the following
mappings between � and �

� Transition to place�

I � �� � �
�
�

O � �� � �
���

� Place to transition�

I � � �� �
�
�

O � � �� �
���

� Transition to transition�

I � �� �
���

O � �� �
���

It is noted that no mapping is de�ned for � �� �� Furthermore� it
is seen that I and O can be regarded as de�ning arcs connecting the
places and transitions of the network� These arcs are weighted� with
all arcs having weight w � ���� with the exception of the arcs de�ned
by O � �� � and O � �� which together de�ne the transition

probabilities T �n�
i�j �see below�� and have weight w � � � w � �� It is

noted that the sum of the arc�weights for arcs leaving any state must
be unity�

The following restrictions are made

� The set of places� �� and the set of transitions� � are disjoint�

� � � � �
�	�

� Two places �i and �j may be connected by at most one single�step
transition�

jO��i� � I��j�j � � �
���

	

� A transitionmay take input from a set of places or a set of transitions�
but not both�

I��i� �� �� � 	 I��i�� � � �
����

I��i� � �� � 	 I��i� �� � � �
����

� A transition can take input from at most one other transition�

jI��i� � j � � �
��
�

� A transition which has output to one or more other transitions can
have at most one input�

�k � O��k� � �� �� jI��k�j � � �
����

These de�nitions provide the basic system structure�

��� Single�step execution rules

The time�independent single�step transition probability between places �i
and �j is denoted by T

���
i�j � This is the probability that a movement can

occur from place �i to place �j provided that there is a single�transition�

�k� linking these two places� It can be seen that T
���
i�j is the weight of the

arc linking places �i and �j �
In order for a single transition� �k� to link two places� that transition

must be an element of the set of output transitions of one of the places�
and an element of the set of input transitions of the other place�

�k � O��i�� I��j� �
��
�

If �k � � then no single�step transition is possible between states �i and
�j � However� if �k �� � then a single�step transition is possible� and the set
�k holds the transition by which that movement is made�

It is now necessary to de�ne the time�dependent single�step transition

probability between places �i and �j at time t� This is the probability
that a single�step transition will occur� based around the system state at
a speci�ed time� It is not possible for a transition to �re until all its input
places are enabled� and a place is said to be enabled if there is a non�zero
marking for that place� Hence� the time�dependent single�step transition
probability is de�ned as

�
�t�
i�j � T

���
i�j

Y
I��k���i

Pk�t� �
����

where �k is de�ned in equation
��
 and Pk�t� is the marking for place �k at
time t� de�ned by equation
�
�� The time�independent single�step transi�

tion probability� T
���
i�j � is multiplied by the product of the probabilities that

�

each of the input places to that transition are enabled� with the exception
of the input place from which the transition is made� This exception is
made for two reasons� Firstly� if the place �i is not included� then a system
with only single input arcs becomes equivalent to a simple Markov chain
model� Second� if the input from place �i is included then the de�nitions
required by the model become mutually recursive and are impossible to
evaluate�

��� n�step execution rules

In section
�� it was speci�ed that movement can occur between two tran�
sitions� �i and �j � subject to certain restrictions on topology� This allows
time�independent n�step transitions between places to be described� These

transition probabilities are denoted by T
�n�
i�j and indicate a movement from

place �i to place �j which passes through n transitions� where n � �� and
which does not pass through any intermediate places� As for the single�

step transition probabilities� T
���
i�j � these n�step transition probabilities are

formed by the product of the weights of the arcs traversed� Given this
de�nition� and the de�nitions of section
�
� it is possible to derive an

expression for the time�dependent n�step transition probability� p
�n�t�
i�j � be�

tween places �i and �j at time t�
It is noted that the n�step transition probabilities for a Markov chain

are given by

p
�n�
i�k �

X
j

pi�jp
�n���
j�k �
����

where

p
���
j�k �

�
� if j �� k

� if j � k
�
����

It is also noted that this probability is time�independent� and allows only
n�step movements which pass through other intermediate places� since
Markov chains do not allow for mappings �� �

This de�nition can be extended by allowing n�step movements which

use only transitions� T
�n�
i�j � although it is not possible to simply add T

�n�
i�j

to the above equation� since there may be other indirect paths by which a
movement may occur� consisting of an m step transition�only movement�
and an �n�m� step movement using intermediate places� This� therefore�
leads to the following expression for the n�step transition probabilities�

p
�n�
i�k �

X
j

pi�jp
�n���
j�k !

nX
m��

X
j

T
�m�
i�j p

�n�m�
j�k �
��	�

where p
���
j�k is de�ned as in equation
���� This consists of the transition

probability as if the direct multi�step transitions were not present� speci�ed

��

by the �rst summation term� with the addition of the probability of making

the transition by any combination of direct� T
�m�
i�j � and indirect� p

�n�m�
j�k �

routes�
It is then a simple matter to add timing information to this� The time

independent single step transition probability� pi�j � is replaced by the time�

dependent probability� �
�t�
i�j �see equation
����� and a timing parameter

is added into the de�nition of the n�step transition probability� p
�n�
i�k � This

provides an expression for the time�dependent n�step transition probability
as follows�

p
�n�t�
i�k �

X
j

�
�t�n�
i�j p

�n���t�
j�k !

nX
m��

X
j

T
�m�
i�j p

�n�m�t�
j�k �
����

where

p
���t�
j�k �

�
� if j �� k

� if j � k
�
�
��

��� Markings and system state

The system marking function is de�ned to be the absolute probability dis�

tribution� Pi�t� representing the probability that there is at least one token
at place �i at time t�

The de�nition of this is based around the equivalent de�nition for a
Markov chain system� modi�ed to allow for time�dependent transition prob�
abilities �as detailed in section
�
�� and to allow for direct n�step transi�
tions� as detailed in section
��� This leads to a de�nition for the absolute
probability as follows�

Pi�t� �
X
j

Pj���p
�t�t�
j�i �
�
��

where Pi��� denotes the initial probability distribution for the system� The
marking is hence a vector which changes with time� based upon the exe�
cution rules of the system� and is therefore a representation of the system
state at a particular time�

� Generic Hard Real Time System Model

The mathematical framework described in sections � and
 allows the be�
haviour of real�time systems to be modelled� From this basic framework a
lattice structured model is developed that models the progress of a com�
putation from its initial state to one of several �nal states� completed�
detectable fault� hidden fault� and failed� This model allows for both the

��

Completed

Figure �� Basic State Chain

functional and temporal properties of a hard real�time system to be rep�
resented and is derived from generic properties of hard real�time systems
hence being independent of any speci�c design�implementation technique
for such systems� We now discusses the development of this model in some
detail�

In order for a system to be classi�ed as hard real�time it must obey cer�
tain properties� In particular� the system must have well�de�ned execution
time bounds� and the probability of the system exceeding those bounds
must be known� Given this information� and in the absence of faults�
such a system may be modelled as a simple state chain with probabilis�
tic transition to a completed state which can only occur during a speci�ed
time period �Figure
�� It is noted that the transition probabilities to the
completed state must match the completion pro�le of the system in the
absence of failures� In general therefore it is expected that these transition
probabilities will not be uniform�

Such a model is� of course� overly simplistic and must be extended in
order to account for the presence of faults within the system� We divide
such faults into two classes� ��� Those which cause run�time errors and so
are detectable before normal system completion� and �
� those faults which
do not cause such errors� and so can only be detected by examining the
�nal system state�

The �rst such class of fault may be modelled by the addition of a de�

tectable fault state to the model describing the system� A transition is made
from each state in the basic state chain to this detectable fault state� with
probability determined as using a random fault model �Section
�� this is
illustrated in �gure �� Since the system obeys a random�fault model� the
transition probability for each of these paths is uniform� It is noted that
faults which would cause a time over�run fall into the detectable category�
and so there is no need to further model a process which can exceed its
time bounds�

The second class of fault leads to a more complex model� requiring
a parallel state chain to represent a system which is still functioning� but
with a hidden fault� These parallel states mimic the function of the original
state chain� and lead to the hidden fault and failed states ��gure ��� The
transition probabilities for this parallel set of states mirror those of the

�

original� fault�free� states� That is� the transition probabilities into the
hidden fault state equal those for transitions into the completed state� and
the transition probabilities into the failed state equal those for the detectable
fault state� The transitions to�from this parallel set of states have uniform
probability� according to the random�fault model�

Completed

Detectable Fault

Figure �� System model with detectable faults

Completed

Failed

Hidden
Fault

Fault
Detectable

Figure �� System model with undetectable faults

This then leads to our �nal model de�nition� comprising two parallel
state chains� representing normal execution and execution with a hidden
fault� These are interconnected with a lattice structure which models hid�
den fault occurrence and recovery� This model may then be subjected to
analysis as described in section
� leading to the determination of the mark�
ing function �Equation
�
�� for the four �nal states of this model� It is
this marking function which represents the system behaviour with time�

Our model may therefore be used to determine both the functional and
the temporal correctness of a system� The functional correctness is indi�
cated by the probability distribution of the system between the four �nal
states of our model� completed� detectable fault� hidden fault� and failed�

��

The temporal correctness is indicated by plotting the timing pro�le to show
the distribution of these probabilities with respect to time�

Implicit in the above discussion has been the precise nature of the tran�

sition probabilities� T
���
i�j � of the lattice model� We divide these into four

categories�

Probability of completion� pc This is the probability that the system
completes execution at any given time step� It is independent of
the occurrence of faults� and must be derived from knowledge of the
algorithm used by the process and�or test data� This is the transition
probability for the arcs leading to the completed and hidden fault

states�

Probability of detectable fault� pd This is the probability that the sys�
tem fails in such a manner that can be detected before the normal
completion� It may be estimated from test data� or from experience
with similar systems� This is the transition probability for arcs lead�
ing to the detectable fault and failed states�

Probability of hidden fault� pf This is the probability that a fault oc�
curs which does not give rise to an error detectable at run�time� Such
a fault may be detected after completion of the process� and hence
may be estimated based on the results of a system acceptance test�
This probability� together with the probability of hidden recovery� de�
�nes the transition probabilities on the arcs interconnecting the two
main state chains of our model�

Probability of hidden recovery� pr This is the probability that the sys�
tem recovers silently from a hidden fault� May be estimated in a
similar manner to the probability of a hidden fault�

With the exception of the completion probability� pc� these transition prob�
abilities are expected to be uniform� and to follow a random�fault model�

It is therefore seen that the parameters required by our model may
readily be estimated based on test data from a real system� Our model
is therefore of use in a predictive role� Given preliminary test data for a
component we derive a reliability and timing prediction� A number of these
may then be combined to predict the behaviour of an entire system�

There is� of course� the question of granularity� At which level is it en�
visaged that our model will be applied� A typical system will be comprised
of a number of fault�tolerant components� perhaps recovery blocks� atomic
transactions� or N �version systems with voters� Each of these components
will consist of a number of diverse alternates� We feel that our model may
best be employed to model the behaviour of these alternates� since these
are relatively small systems from which parameters may be readily derived�

�

Techniques such as those discussed in section � may then be employed to
extend the model to the component level�

Such a model may then be used as a design aid during schedulability
analysis� In particular� it may be used to derive a schedule which takes
into account the probability distribution of the system�s execution time�
allowing the reliability�performance trade o� to be made explicit�

� Application to Recovery Block Systems

The recovery block ���� is a technique which uses multiple versions of a pro�
gram block to attempt to ensure success in the presence of system failures�
The �rst version is known as the primary and the second and subsequent
versions are known as alternates� The primary is executed� and an accep�
tance test evaluated� If this fails� the alternates are executed in series until
one succeeds� In order for the entire system to operate successfully under
hard real�time constraints� it is necessary for each alternate to operate un�
der such constraints� Each alternate in the recovery block may� therefore�
be viewed as a generic hard real�time system� and the model developed in
section � is applicable� In order to model the full recovery block� an accep�
tance test model is also required� This must map from the output states
of the alternate to the �nal pass�fail states� A generic acceptance test will
be fallible� that is� it will not correctly classify all systems� and will take
a �nite amount of time� For reasons of simplicity and tractability of the
analysis� the test modelled here will� however� be assumed infallible ���� and
will take unit time� The study of systems with fallible acceptance tests is
the subject of current research� This combined alternate and acceptance
test model is illustrated in �gure ��

PASS
Completed

Failed

Hidden
Fault

Fault
Detectable

FAIL

Figure �� Alternate Model With Acceptance Test

Several such systems may be combined in order to model a complete
recovery block� This is illustrated in �gure 	 for a recovery block consisting
of a primary and two alternates�

��

Completed

Failed

Figure �� Recovery Block Model

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

Pr
ob

ab
ili

ty

Time

Primary
1st Alternate

2nd Alternate

Figure 	� Basic Alternate Completion Pro�les

In order to illustrate the applicability of our model� a system such as
that in �gure 	 has been analysed� For the purpose of this example� the
primary and the two alternates were selected as follows �These systems are
illustrated in �gure ���

Primary A slow but reliable system� where the completion probability
increases with time� For example some form of iterative solution or
stepwise re�nement technique�

�st Alternate A fast but unreliable system� For example a naive linear
interpolation algorithm applied to a nonlinear system�

�nd Alternate A reliable� medium speed system� The completion pro�le
of this system follows a �bell�shaped� curve� For example an algebraic
solution to a set of equations� where the completion time is somewhat
data dependent�

��

There are three other parameters to the alternate model� Probability of
detectable fault� pd� probability of hidden fault� pf � and probability of
hidden recovery� pr� In these tests pf and pr will be �xed for each alternate�
and pd will be varied� The values chosen for these parameters are shown
in table ��

Prob� hidden fault� pf Prob� hidden recovery� pr
Primary ����� �����
�st Alternate ����� �����

nd Alternate ����� �����

Table �� Alternate Parameters

The results of the analysis in the form of completion�failure pro�les
for di�erent values of pc are shown in �gures �� and �� The completion
pro�le ��gure ��� clearly shows the e�ects of changing the value of pc� the
forward failure rate� For small pc the system behaves as if the primary
and the two alternates are executing sequentially� Indeed this is so� be�
cause the majority of failures occuring are due to an alternate exceeding
its time bounds� and not due to forward failures� As the failure rate� pc�
increases� the shape of the completion pro�le also changes� Those systems
which complete successfully do so sooner� but the completion probability
decreases also� Further� the three alternates become less distinguishable�

The failure pro�le ��gure ��� shows a related trend� For low failure
rates� most failures occur towards the end of the system�s life� due to ex�
haustion of alternates in the recovery block� As the forward failure rate
increases systems are increasingly likely to fail sooner in their life�

Comparing the completion and failure pro�les� it may be seen that the
recovery block system exhibits two operational modes� At low forward
failure rate� the system�s behaviour is determined almost exclusively by
time�overrun of alternates� and eventual exhaustion of alternates towards
the end of the system�s life� As the failure rate increases� we see a transition
to a mode where alternates rarely complete their execution� and the system
failure rate increases dramatically� Such a mode change is con�rmed also
by a plot of the mean�time�to�failure ��gure �
� derived from the failure
pro�le� Such a plot shows a sharp decline around the point where the mode
change may be observed on the completion�failure pro�le plots�

Given this information� and a knowledge of the expected use of the sys�
tem� the designer is in a position to make an informed decision on whether
the absolute worst�case execution time must be used� or whether a reduced
set of bounds can be chosen� with a speci�c risk that the system will fail to
performwithin these bounds� It is believed that in many cases the absolute

��

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
Pr

ob
ab

ili
ty

Time

0.00001
0.00005
0.00010
0.00050
0.00100
0.00500
0.01000
0.05000
0.10000

Figure �
� Recovery Block Completion Pro�le

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
Fa

ilu
re

 P
ro

ba
bi

lit
y

Time

0.00001
0.00005
0.00010
0.00050
0.00100
0.00500
0.01000
0.05000
0.10000

Figure ��� Recovery Block Failure Pro�le

�	

15

20

25

30

35

40

45

50

55

60

1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
T

im
e

T
o

Fa
ilu

re

Forward Failure Probability

Figure ��� Recovery Block Mean�Time�To�Failure

worst�case behaviour is su�ciently unlikely� and the failure probabilities of
other parts of the system are su�ciently large� that the increased probabil�
ity of time�bound over�run will be acceptance� Application of this model
will provide greater con�dence that software can be designed to a speci�c�
tolerable� level of risk�

� Conclusions

In this paper we have introduced a new reliability model for the analysis
of hard real�time systems which are subject to faults� The advantage of
our technique compared to other published models is its ability to model
the completion� and failure�pro�les of hard real�time systems as probability
distributions with respect to system execution time� The model described
is based upon the concept of a random�failure model as applied to an
embedded software system� with few parameters� All system parameters
should be readily observable from real systems�

The new model has been used to analyse a simple recovery block sys�
tem� The results illustrate that the model is su�cient for describing such
systems� The concept of bounded completion pro�les has been introduced�
and the use of this technique is system design has been discussed brie�y�

Future work will report on the e�ects of fallible acceptance tests on
the system completion pro�le� and on the application of this model to sys�
tems other than the recovery block� In particular� evaluation of concurrent
systems requiring synchronisation is a priority�

��

� Acknowledgments

This research was supported by the UK Engineering and Physical Sciences
Research Council�

Bibliography

�� J� Arlat� L� Kanoun� and J��C� Laprie� Dependability evaluation of
software fault�tolerance� In Proceedings ��th International Symposium

on Fault� Tolerant Computing� IEEE� June ��		�

� S� Balaji� L� Jenkins� L�M� Patnaik� and P�S� Goel� Workload redis�
tribution for fault�tolerance in a hard real�time distributed computing
system� In ��th International Symposium on Fault�Tolerant Comput�

ing� pages �������� IEEE� ��	��

�� A� Csenki� Reliability analysis of recovery blocks with nested clus�
ters of failure points� IEEE Transactions on Reliability�

�����
�
��
March �����

� B� Dimitrov� Z� Khalil� N� Kolev� and P� Petrov� On the optimal total
processing time using checkpoints� IEEE Transactions on Software

Engineering� ������
���

� May �����

�� European Space Agency� Software reliability modeling study� February
��		� Invitation to tender AO���
����	��NL�IW�

�� J� N� Gray� Why do computers stop and what can be done about it�
In Proceedings �th Symposium on Reliability in Distributed Software

and Database Systems� pages ���
� Los Angeles� January ��	��

�� A� Grnarov� J� Arlat� and A� Avizienis� On the performance of soft�
ware fault�tolerance strategies� In Proceedings of the ��th International
Symposium on Fault� Tolerant Computing� IEEE� ��	��

	� D� Haban and K� G� Shin� Application of real�time monitoring to
scheduling tasks with random execution times� IEEE Transactions on

software engineering� ����
�� December �����

�� B� E� Helvik� Modelling the in�uence of unreliable software in dis�
tributed computer systems� In Digest of papers � ��th International

symposium on fault�tolerant computing� pages �����
�� IEEE� ��		�

��� J� C� Knight and N� G� Leveson� An experimental evaluation of the as�
sumption of independence in multiversion programming� IEEE Trans�

actions on Software Engineering� SE��
����������� January ��	��

�

��� J��C� Laprie� Dependability evaluation of software systems in opera�
tion� IEEE Transactions on Software Engineering� SE����
��������
�
November ��	
�

�
� J��C� Laprie and K� Kanoun� X�Ware reliability and availability mod�
eling� IEEE Transactions of Software Engineering� �	�
�������
��
February ���
�

��� B� Littlewood� Stochastic reliability�growth� A model for fault�removal
in computer programs and hardware designs� IEEE Transactions on

Reliability� R����
�������
�� October ��	��

�
� J�D� Musa� Validity of execution�time theory of software reliability�
IEEE Transactions on Reliability� R�
	�����	������ August �����

��� J�D� Musa� Software reliability data� Technical report� Bell Telephone
Laboratories� January ��	�� Report obtainable from DACS� Rome Air
Development Centre� Rome� New York�

��� C� Y� Park� Predicting program execution times by analysing static
and dynamic program paths� Real�Time Systems� ������
� �����

��� J�L� Peterson� Petri net theory and the modeling of systems� Prentice�
Hall� ��	��

�	� G� Pucci� A new approach to the modeling of recovery block structures�
IEEE Transactions on software engineering� �	�
���������� February
���
�

��� B� Randell� System structure for software fault tolerance� IEEE Trans�

actions on Software Engineering� SE���

��
��� June �����

�� A� Ranganathan and S� Upadhyaya� Performance evaluation of
rollback�recovery techniques in computer programs� IEEE Transac�

tions on Reliability�

�
��

��

�� June �����

�� R� K� Scott� J� W� Gault� and D� F� McAllister� Fault�tolerant software
reliability modeling� IEEE Transactions of Software Engineering� SE�
�������	
���
� May ��	��

� T� Shepard and J� A� M� Gagn"e� A pre�run�time scheduling algorithm
for hard real�time systems� IEEE Transactions on Software engineer�

ing� ������ July �����

�� L� Tak"acs� Stochastic processes� Methuen� ���
�

� J� Xu and D� L� Parnas� On satisfying timing constraints in hard�real�
time systems� IEEE Transactions on Software Engineering� ���������
	
� January �����

