Reliability Models for Hard Real-Time
Systems

CS Perkins AM Tyrrell
Department of Electronics, University of York

Heslington, York, YO1 5DD, UK.

Abstract

We present a new reliability model for hard real-time systems.
This is an extended Markov model, derived from an analysis of
the generic properties of hard real-time systems subject to a sim-
ple random-fault model. Our model permits analysis of the run-time
behaviour of a system, in order to derive the probability profiles of
the system’s completion/failure times. The model is applied to the
analysis of a simnple sequential recovery block system, and illustrative
examples based on this system are provided. The paper concludes
with a discussion of the application of such accurate completion pro-
file information to the design of embedded software systems.

Keywords: Real-time system, Recovery block, Markov model,
completion probability profile.

1 Introduction

Before fault-tolerant features can sensibly be applied to a system, thereis a
need to determine the effects they have on the reliability and failure modes
of the system as a whole. In particular, it is important that an accurate
failure/reliability model is available during the design of fault-tolerant and
safety critical systems, whether those systems comprise hardware, software
or some combination of the two. This paper will describe a new approach
to reliability modelling for embedded software systems, with emphasis on
the applicability of this technique to hard real-time safety critical systems.

The reliability models which have been developed in the literature may
be split into two groups: Fuuctional models which describe the system
from a time-independent viewpoint, and dynamic models which describe
the run-time behaviour of a system. Time-independent models [1, 9, 18, 21]
are typically based around a Markov-chain or other probabilistic process
which is used to describe the behaviour of the system either neglecting in-
formation about execution time or providing a partial ordering of events
ouly. Such models enable the probability of failure for a particular struc-
ture to be calculated, but do not provide for the calculation of the timing

2

properties of the system. Whilst this is undoubtably of value, its usefulness
in the analysis of hard real-time systems must be questioned, since these
systems require not only functionally correct behaviour, but also temporally
correct behaviour. The timing properties of a hard real-time system are
as important as its functional properties in ensuring correct operation and,
unfortunately, this class of model is not able to describe this with sufficient
rigour.

In contrast, time-dependent models are much less well developed [4, 7].
Although some work has been conducted into finding algorithms to derive
the mean execution time of a set of processes in the presence of failure
[20], there has been little work undertaken to determine the probability
distribution of the system’s execution time. Much of the research conducted
with hard real-time systems has focussed on scheduling problems [2, 8, 16,
22, 24], and typically requires knowledge of the execution time bounds of a
process to enable efficient schedules to be calculated. With the introduction
of fault-tolerant procedures, the execution time bounds of the system will
change. It is therefore important that a means of deriving an expression
for the execution time of a system with fault-tolerant processes is found,
and it is this problem which is addressed in this paper.

It is therefore noted that: 1) Whilst time-independent reliability models
are useful, they do not address a number of important problems which must
be resolved before these techniques will be of use in designing hard real-
time systems; and 2) It is of great importance to be able to derive the
probability distribution of process completion times, in order to have some
means of developing an execution schedule to meet all required deadlines,
even in the presence of failures and error recovery.

Taken together these points illustrate a problem with current approaches
to designing hard real-time systems: It is usual for the timing properties of
a hard real-time system to be abstracted away so as to give each process a
maximum execution time. Provided such a maximum time can be assigned
to each process, it is then possible to devise scheduling algorithms which,
given sufficient resources, will ensure that all deadlines are met. These
algorithms are, however, pessimistic because they rely on the upper bound
of a process’ execution time, where as in real-systems, the probability of
errors occurring is low and the execution time of most processes is typi-
cally much less than the maximum. The system therefore operates with
much slack-time, implying low efficiency but high reliability. The thesis of
this paper is that, if the probability distribution of the process’ execution
times is known, it is possible to design a system which relys on this to
attain much improved efficiency, whilst still managing to operate within a
tolerable level of risk.

The remainder of this paper is split into the following sections: Section
2 describes the motivation behind this work, and places it in the context
of other published literature. Sections 3 and 4 describes the underlying

3

mathematical model used as a basis for the work, whilst sections 5 and 6
describe the application of this to the modelling of a sequential recovery
block structure. Finally section 7 summarises the work.

2 Background

It is desired to model the execution of a system in such a manner that the
probability distribution of the execution time can be determined, together
with the system reliability. This section will propose a scheme by which
this can be accomplished.

A number of experimental studies have been conducted into the failure
characteristics of software systems [10, 15]. These studies, together with
theoretical results such as those presented in [7, 11, 12, 13, 14] seem to
indicate that it is possible to achieve a reasonably accurate prediction of the
failure characteristics of a software system using very simple models, and
indeed, it has often been proposed that a random-fault model will suffice.
Such a model is of use because of its ease of application and similarity to
hardware reliability models, allowing similar techniques to be applied to
the modelling of both hardware and software.

The notion of software faults occurring randomly is not intuitively obvi-
ous: In particular, a software system is typically thought of as being purely
deterministic — given a specific set of inputs a certain output will arise, and
that same output will arise whenever that set of inputs is presented to the
system. How can such a system conform to a random-fault model?

The simple answer is, of course, that it cannot. However, it can be seen
that although the underlying faults do not occur randoinly, their manifes-
tation can appear to follow the random-fault model. A typical embedded
control system will comprise a set of interacting software processes, to-
gether with a number of hardware devices. Interactions occur not only
between software processes, but also between software processes and hard-
ware devices and between hardware devices. In addition, interactions may
occur between different parts of the system due to the flow of information
through the external environment. This is illustrated in figure 1.

The software comprising an embedded system such as this will have
a large input space: It is directly affected by software-software interac-
tions and software-hardware interactions and also indirectly affected by
hardware-hardware interactions and the influence of the external environ-
ment. As the number of inputs to the system increases, and more and
more external devices are included, it becomes increasingly difficult to de-
termine the system boundary and the number of possible interactions in-
creases rapidly. Furthermore, it is typical that embedded systems have a
temporal dimension to their input space: Identical inputs may well produce
different outputs at different times.

Hardware Subsystem !

Software Subsystem

Information flow through environment Externa Environment

Figure 1. The structure of a typical embedded control system

It can readily be seen that, for all but the simplest of systems, the
input space is so large, and the interactions which occur are so subtle and
complex, that it is effectively impossible to predict the path the system
will take through its input space [13]. From the above arguments, it seems
reasonable to model the system’s path through its inputs as a random-walk
in a multi-dimensional space. This is transformed by the system to provide
a path through the output space which is necessarily also modelled as a
random walk. This is illustrated in figure 2.

Input Space Embedded System Output Space

Fault Space

Figure 2. Random walk through the system’s input space

There are typically a number of points in the input space which will

5

give rise to faults in the system, and those faults may, eventually, cause
errors to manifest themselves. Such errors, if untreated, may cause system
failures. It is noted that faults which are close in the input space will not
necessarily give rise to faults which are close in the output space.

This then is the basis for the system model to be used in this paper.
It will be assumed that the system’s input space is sufficiently large, and
the tasks to be undertaken sufficiently complex, that a random-fault model
such as this is applicable. It is considered that such an assumption is not
unrealistic, indeed it is the basis for a number of other models [12, 13, 14],
and certain experimental data [6, 15] has been collected which appears to
confirm the validity of this approach. The work conducted by Laprie [11]
also lends support to this, when it is noted that

“...the constancy of the hazard rates, although it is an @ prior:
unrealistic hypothesis, turns out to be satisfactory.”

It is further noted that a study made of the reliability logs of Tandem
systems [6] provides evidence for this claim, as indeed does the work of
Musa at Bell Labs [14, 15], and that of the European Space Agency [5],
where it is noted that

“Software failure is a process that appears to the observer to
be random, therefore the term reliability is meaningful when
applied to a system which includes software and the process
can be modelled as stochastic.”

It can therefore be seen that the random-fault model as applied to software
and combined hardware-software systems provides a reasonable fit with
experimental data with a relatively simple theoretical background.

3 Underlying Mathematical Model

The underlying mathematical model detailed here is a stochastic model, de-
rived primarily from Markov chain theory [23], with modifications to allow
for simple process interactions. The underlying network model borrows a
number of concepts from Petri net theory [17], not least the notation used.
Despite the notational similarities, however, this is primarily a Markov
model, not a Petri net system.

The basis of the model comprises a multi-graph consisting of a set of
places and a set of transitions connected by directed arcs. The system
state is defined by the probabilistic distribution of a set of tokens amongst
these places. Changes in the system state are indicated by movement of
tokens along these arcs, from place to place by means of the intermediate
transitions. All tokens move at once, in step-time. A transition cannot

6

fire until it has a token in each of its input places, and when it does fire it
sends a single token to one of its output places, determined probabilistically
by the transition probabilities labelled on the arcs leading away from the
transitions. A place may have multiple input arcs and hence, may receive
multiple tokens. A place will output a token down each of its output arcs.
A place will therefore create or destroy tokens as required.

L

Simple Transition ~ Probabilistic Transition Synchronisation Parallel Execution

Figure 3. Basic modes of execution

The basic modes of execution of the model are shown in figure 3. The
semple transition and probabilistic transition modes correspond to a stan-
dard Markov chain model: Tokens are neither created or destroyed. In
these modes the system shows multiple possible paths of execution — it
can perform one action from a choice of many possibilities this is mod-
elled as a transition with multiple output arcs.

A system which permits concurrent execution of multiple paths is also
possible, and is modelled by a place with multiple output arcs. This is the
parallel execution mode, and shows token creation. Further, it is possible
to model synchronisation among these concurrent processes by means of
transitions with multiple input arcs. Such transitions cannot fire until all
their input places contain tokens, and so they introduce synchronisation
into the execution of the system, and destroy excess tokens.

It is the ability to model both probabilistic and concurrent execution
with ease which sets this model apart from traditional Markov models.

A formal definition of this model is provided in section 4, whilst details
of the application of this model to problems in real-time system design are
discussed in sections 5 and 6.

4 Formal definition of the model

4.1 Basic Network Model

The basis of the model is a set of places with probabilistic movement of
tokens between them. This is defined by a four-tuple

C=(0,A,1,0) (4.1)

=1

where

e O ={#,0,,...,0,} is a finite set of places with n > 2 representing
the system state.

o A={\,A2,..., A} is a finite set of transitions with m > 1, repre-
senting the possible movements between states.

e The input function, I, and the output function, O, define the following
mappings between © and A:

% Transition to place:

I:A—0 (4.2)

O:A— 0 (4.3)
% Place to transition:

1:0— A (4.4)

0:0—A (4.5)
% Transition to transition:

T:A— A (4.6)

O:A— A (4.7)

It is noted that no mapping is defined for © — ©. Furthermore, it
is seen that I and O can be regarded as defining arcs connecting the
places and transitions of the network. These arcs are weighted, with
all arcs having weight w = 1.0, with the exception of the arcs defined
by O: A+~ O and O : A — A which together define the transition
probabilities Ti(,?) (see below), and have weight w: 0 < w < 1. It is
noted that the sum of the arc-weights for arcs leaving any state must
be unity.

The following restrictions are made
e The set of places, @, and the set of transitions, A, are disjoint:

ONA=10 (4.8)

e Two places ; and ¢; may be connected by at most one single-step
transition:

|O(0;) N 1(6;)] < 1 (4.9)

e A transition may take input from a set of places or a set of transitions,
but not both:

IM)NA#D=TI(N)NO =0 (4.11)
e A transition can take input from at most one other transition:

II(A)NA] < 1 (4.12)

e A transition which has output to one or more other transitions can
have at most one input:

YA : Oe) NA £ D[I()] <1 (4.13)
These definitions provide the basic system structure.

4.2 Single-step execution rules

The time-independent single-step transition probability between places 6;
and f; is denoted by Ti(?' This is the probability that a movement can
occur from place 0; to place ¢; provided that there is a single-transition,

Ak, linking these two places. It can be seen that TZ»(‘;-) is the weight of the
arc linking places ©; and O;.

In order for a single transition, Ay, to link two places, that transition
must be an element of the set of output transitions of one of the places,
and an element of the set of input transitions of the other place:

Ae = O(0;) N I(6;) (4.14)

If \x = @ then no single-step transition is possible between states 6; and
f;. However, if A\, # 0 then a single-step transition is possible, and the set
Ak holds the transition by which that movement is made.

It is now necessary to define the tszme-dependent single-step transition
probability between places ¢; and 6; at time ¢. This is the probability
that a single-step transition will occur, based around the system state at
a specified time. It is not possible for a transition to fire until all its input
places are enabled; and a place is said to be enabled if there is a non-zero
marking for that place. Hence, the time-dependent single-step transition
probability is defined as

=0 T B® (4.15)
I(Ag)—0;

where A, is defined in equation 4.14 and Py (t) is the marking for place 8, at
time ¢, defined by equation 4.21. The time-independent single-step transi-
tion probability, 7’ (1)

i j » is multiplied by the product of the probabilities that

9

each of the input places to that transition are enabled, with the exception
of the input place from which the transition is made. This exception is
made for two reasons: Firstly, if the place ¢; is not included, then a system
with only single input arcs becomes equivalent to a simple Markov chain
model. Second, if the input from place #; is included then the definitions
required by the model become mutually recursive and are impossible to
evaluate.

4.3 n-step execution rules

In section 4.1 it was specified that movement can occur between two tran-
sitions, A; and Aj, subject to certain restrictions on topology. This allows
time-independent n-step transitions between places to be described. These
transition probabilities are denoted by T,L-(’?) and indicate a movement from
place ¢; to place #; which passes through n transitions, where » > 1, and
which does not pass through any intermediate places. As for the single-
step transition probabilities, T(j these n-step transition probabilities are
formed by the product of the weights of the arcs traversed. Given this
definition, and the definitions of section 4.2, it is possible to derive an
expression for the teme-dependent n-step transition probability, p(” " be-
tween places §; and ; at time ¢.

It is noted that the n-step transition probabilities for a Markov chain
are given by

= Zpup]"* (4.16)
where
(0) 0if j#Fk e

It is also noted that this probability is teme-independent, and allows only
n-step movements which pass through other intermediate places, since
Markov chains do not allow for mappings A — A.

This definition can be extended by allowing n-step movements which
use only transitions, Tl(]), although it is not possible to simply add T(”
to the above equation, since there may be other indirect paths by w h1ch a
movement may occur, consisting of an m step transition-only movement,
and an (n — m) step movement using intermediate places. This, therefore,
leads to the following expression for the n-step transition probabilities:

P =Yl +ZZT Pl (4.18)

Kl m=2 j

(0)

where p. is defined as in equation 4.17. This consists of the transition
probability as if the direct multi-step transitions were not present, specified

10

by the first summation term, with the addition of the probability of making
the transition by any combination of direct, Ti(,T)" and indirect, pé?,;m)
routes.

It is then a simple matter to add timing information to this; The time
independent single step transition probability, p; ;, is replaced by the time-
t)
J

is added into the definition of the n-step transition probability, pgrz) This
provides an expression for the time-dependent n-step transition probability

dependent probability, 772 (see equation 4.15), and a timing parameter

as follows:

n,t (t—n) (n—1,t (m n—m,t)
D DL R T D B S (4.19)
i m=2 j
where
on | 0ifj#Ek
rin = { Lif j = & (4.20)

4.4 Markings and system state

The system marking function is defined to be the absolute probability dis-
tribution, P;(t) representing the probability that there is at least one token
at place 6; at time ¢.

The definition of this is based around the equivalent definition for a
Markov chain system, modified to allow for time-dependent transition prob-
abilities (as detailed in section 4.2), and to allow for direct n-step transi-
tions, as detailed in section 4.3. This leads to a definition for the absolute
probability as follows:

Pty =y P;(0)py" (4.21)

where P;(0) denotes the initial probability distribution for the system. The
marking is hence a vector which changes with time, based upon the exe-
cution rules of the system, and is therefore a representation of the system
state at a particular time.

5 Generic Hard Real Time System Model

The mathematical framework described in sections 3 and 4 allows the be-
haviour of real-time systems to be modelled. From this basic framework a
lattice structured model is developed that models the progress of a com-
putation from its initial state to one of several final states: completed,
detectable fault, hidden fault, and failed. This model allows for both the

11

Completed

Figure 4. Basic State Chain

functional and temporal properties of a hard real-time system to be rep-
resented and is derived from generic properties of hard real-time systems
hence being independent of any specific design/implementation technique
for such systems. We now discusses the development of this model in some
detail.

In order for a system to be classified as hard real-time it must obey cer-
tain properties. In particular, the system must have well-defined execution
time bounds, and the probability of the system exceeding those bounds
must be known. Given this information, and in the absence of faults,
such a system may be modelled as a simple state chain with probabilis-
tic transition to a completed state which can only occur during a specified
time period (Figure 4). It is noted that the transition probabilities to the
completed state must match the completion profile of the system in the
absence of failures. In general therefore it is expected that these transition
probabilities will not be uniform.

Such a model is, of course, overly simplistic and must be extended in
order to account for the presence of faults within the system. We divide
such faults into two classes: (1) Those which cause run-time errors and so
are detectable before normal system completion; and (2) those faults which
do not cause such errors, and so can only be detected by examining the
final system state.

The first such class of fault may be modelled by the addition of a de-
tectable fault state to the model describing the system. A transition is made
from each state in the basic state chain to this detectable fault state, with
probability determined as using a random fault model (Section 2), this is
illustrated in figure 5. Since the system obeys a random-fault model, the
transition probability for each of these paths is uniform. It is noted that
faults which would cause a time over-run fall into the detectable category,
and so there is no need to further model a process which can exceed its
time bounds.

The second class of fault leads to a more complex model, requiring
a parallel state chain to represent a system which is still functioning, but
with a hidden fault. These parallel states mimic the function of the original
state chain, and lead to the hidden fault and failed states (figure 6). The
transition probabilities for this parallel set of states mirror those of the

12

original, fault-free, states. That is, the transition probabilities into the
hidden fault state equal those for transitions into the completed state, and
the transition probabilities into the failed state equal those for the detectable
fault state. The transitions to/from this parallel set of states have uniform
probability, according to the random-fault model.

Detectable Fault
Completed
Figure 5. System model with detectable faults
Detectable

Fault

O
/ O
\ O

O

Figure 6. System model with undetectable faults

This then leads to our final model definition, comprising two parallel
state chains, representing normal execution and execution with a hidden
fault. These are interconnected with a lattice structure which models hid-
den fault occurrence and recovery. This model may then be subjected to
analysis as described in section 4, leading to the determination of the mark-
ing function (Equation 4.21) for the four final states of this model. It is
this marking function which represents the system behaviour with time.

Our model may therefore be used to determine both the functional and
the temporal correctness of a system. The functional correctness is indi-
cated by the probability distribution of the system between the four final
states of our model: completed, detectable fault, hidden fault, and failed.

13

The temporal correctnessis indicated by plotting the timing profile to show
the distribution of these probabilities with respect to time.

Implicit in the above discussion has been the precise nature of the tran-
sition probabilities, TZ»%), of the lattice model. We divide these into four
categories:

Probability of completion, p. This is the probability that the system
completes execution at any given time step. It is independent of
the occurrence of faults, and must be derived from knowledge of the
algorithm used by the process and/or test data. This is the transition
probability for the arcs leading to the completed and hidden fault
states.

Probability of detectable fault, p; This is the probability that the sys-
tem fails in such a manner that can be detected before the normal
completion. It may be estimated from test data, or from experience
with similar systems. This is the transition probability for arcs lead-
ing to the detectable fault and failed states.

Probability of hidden fault, p; This is the probability that a fault oc-
curs which does not give rise to an error detectable at run-time. Such
a fault may be detected after completion of the process, and hence
may be estimated based on the results of a system acceptance test.
This probability, together with the probability of hidden recovery, de-
fines the transition probabilities on the arcs interconnecting the two
main state chains of our model.

Probability of hidden recovery, p, This is the probability that the sys-
tem recovers silently from a hidden fault. May be estimated in a
similar manner to the probability of a hidden fault.

With the exception of the completion probability, p., these transition prob-
abilities are expected to be uniform, and to follow a random-fault model.
It is therefore seen that the parameters required by our model may
readily be estimated based on test data from a real system. Our model
is therefore of use in a predictive role; Given preliminary test data for a
component we derive a reliability and timing prediction. A number of these
may then be combined to predict the behaviour of an entire system.
There is, of course, the question of granularity: At which level is it en-
visaged that our model will be applied? A typical system will be comprised
of a number of fault-tolerant components; perhaps recovery blocks, atomic
transactions, or /NV-version systems with voters. Each of these components
will consist of a number of diverse alternates. We feel that our model may
best be employed to model the behaviour of these alternates, since these
are relatively small systems from which parameters may be readily derived.

14

Techniques such as those discussed in section 6 may then be employed to
extend the model to the component level.

Such a model may then be used as a design aid during schedulability
analysis. In particular, it may be used to derive a schedule which takes
into account the probability distribution of the system’s execution time;
allowing the reliability /performance trade off to be made explicit.

6 Application to Recovery Block Systems

The recovery block [19] is a technique which uses multiple versions of a pro-
gram block to attempt to ensure success in the presence of system failures.
The first version is known as the primary and the second and subsequent
versions are known as alternates. The primary is executed, and an accep-
tance test evaluated. If this fails, the alternates are executed in series until
one succeeds. In order for the entire system to operate successfully under
hard real-time constraints, it is necessary for each alternate to operate un-
der such constraints. Each alternate in the recovery block may, therefore,
be viewed as a generic hard real-time system, and the model developed in
section 5 is applicable. In order to model the full recovery block, an accep-
tance test model is also required. This must map from the output states
of the alternate to the final pass/fail states. A generic acceptance test will
be fallible, that is, it will not correctly classify all systems, and will take
a finite amount of time. For reasons of simplicity and tractability of the
analysis, the test modelled here will, however, be assumed infallible [3], and
will take unit time. The study of systems with fallible acceptance tests is
the subject of current research. This combined alternate and acceptance
test model is illustrated in figure 7.

Detectable
Fault

.
/S

<

FAIL

Failed

Figure 7. Alternate Model With Acceptance Test

Several such systems may be combined in order to model a complete
recovery block. This is illustrated in figure 8 for a recovery block consisting
of a primary and two alternates.

S T

Figure 8. Recovery Block Model

01 :

Primary —
S 1st Alternate ----
0.09 | 2nd Alternate -----
0.08 - 1
0.07 - 1
2
g 0.06 4
T oms| i
S
ko]
? 0.04
s X
0.03 - 4
0.02 - 1
001 - 1
0 I
0 5 50

Figure 9. Basic Alternate Completion Profiles

In order to illustrate the applicability of our model, a system such as
that in figure 8 has been analysed. For the purpose of this example, the
primary and the two alternates were selected as follows (These systems are
illustrated in figure 9):

Primary A slow but reliable system, where the completion probability
increases with time. For example some form of iterative solution or
stepwise refinement technique.

1st Alternate A fast but unreliable system. For example a naive linear
interpolation algorithm applied to a nonlinear system.

2nd Alternate A reliable, medium speed system. The completion profile
of this system follows a “bell-shaped” curve. For example an algebraic
solution to a set of equations, where the completion time is somewhat
data dependent.

16

There are three other parameters to the alternate model: Probability of
detectable fault, pg; probability of hidden fault, py; and probability of
hidden recovery, p,. In these tests py and p, will be fixed for each alternate,
and pg will be varied. The values chosen for these parameters are shown
in table 1.

Prob. hidden fault, p; | Prob. hidden recovery, p,
Primary 0.001 0.001
1st Alternate 0.010 0.010
2nd Alternate 0.010 0.005

Table 1. Alternate Parameters

The results of the analysis in the form of completion/failure profiles
for different values of p. are shown in figures 10 and 11 The completion
profile (figure 10) clearly shows the effects of changing the value of p., the
forward failure rate. For small p. the system behaves as if the primary
and the two alternates are executing sequentially: Indeed this is so, be-
cause the majority of failures occuring are due to an alternate exceeding
its time bounds, and not due to forward failures. As the failure rate, p.,
increases, the shape of the completion profile also changes: Those systems
which complete successfully do so sooner, but the completion probability
decreases also. Further, the three alternates become less distinguishable.

The failure profile (figure 11) shows a related trend. For low failure
rates, most failures occur towards the end of the system’s life, due to ex-
haustion of alternates in the recovery block. As the forward failure rate
increases systemns are increasingly likely to fail sooner in their life.

Comparing the completion and failure profiles, it may be seen that the
recovery block system exhibits two operational modes. At low forward
failure rate, the system’s behaviour is determined almost exclusively by
time-overrun of alternates, and eventual exhaustion of alternates towards
the end of the system’s life. As the failure rate increases, we see a transition
to a mode where alternates rarely complete their execution, and the system
failure rate increases dramatically. Such a mode change is confirmed also
by a plot of the mean-time-to-failure (figure 12) derived from the failure
profile. Such a plot shows a sharp decline around the point where the mode
change may be observed on the completion/failure profile plots.

Given this information, and a knowledge of the expected use of the sys-
tem, the designer is in a position to make an informed decision on whether
the absolute worst-case execution time must be used, or whether a reduced
set of bounds can be chosen, with a specific risk that the system will fail to
perform within these bounds. It is believed that in many cases the absolute

Instantaneous Compl etion Probability

Instantaneous Failure Probability

0.06

Time

Figure 10. Recovery Block Completion Profile

100

0.03 |

0.025 -

0.02 -

0.015 -

0.005 -

Figure 11. Recovery Block Failure Profile

100

1

-

18

Mean Time To Failure

15 I I I I

1e-05 0.0001 01 1

0.001 0.01
Forward Failure Probability

Figure 12. Recovery Block Mean-Time-To-Failure

worst-case behaviour is sufficiently unlikely, and the failure probabilities of
other parts of the system are sufficiently large, that the increased probabil-
ity of time-bound over-run will be acceptance. Application of this model
will provide greater confidence that software can be designed to a specific,
tolerable, level of risk.

7 Conclusions

In this paper we have introduced a new reliability model for the analysis
of hard real-time systems which are subject to faults. The advantage of
our technique compared to other published models is its ability to model
the completion- and failure-profiles of hard real-time systems as probability
distributions with respect to system execution time. The model described
is based upon the concept of a random-failure model as applied to an
embedded software system, with few parameters. All system parameters
should be readily observable from real systems.

The new model has been used to analyse a simple recovery block sys-
tem. The results illustrate that the model is sufficient for describing such
systems. The concept of bounded completion profiles has been introduced,
and the use of this technique is system design has been discussed briefly.

Future work will report on the effects of fallible acceptance tests on
the system completion profile, and on the application of this model to sys-
tems other than the recovery block. In particular, evaluation of concurrent
systems requiring synchronisation is a priority.

8

19

Acknowledgments

This research was supported by the UK Engineering and Physical Sciences
Research Council.

Bibliography

1.

=~

10.

J. Arlat, L. Kanoun, and J.-C. Laprie. Dependability evaluation of
software fault-tolerance. In Proceedings 18th International Symposium
on Fault- Tolerant Computing. IEEE, June 1988.

. S. Balaji, L. Jenkins, L.M. Patnaik, and P.S. Goel. Workload redis-

tribution for fault-tolerance in a hard real-time distributed computing
system. In 19th International Symposium on Fault-Tolerant Comput-

1mg, pages 366-373. IEEE, 1989.

A. Csenki. Reliability analysis of recovery blocks with nested clus-
ters of failure points. IEEE Transactions on Reliability, 42(1):34-43,
March 1993.

. B. Dimitrov, Z. Khalil, N. Kolev, and P. Petrov. On the optimal total

processing time using checkpoints. IEEE Transactions on Software
Engineering, 17(5):436-442, May 1991.

. European Space Agency. Software reliability modeling study, February

1988. Invitation to tender AO/1-2039/87/NL/ITW.

J. N. Gray. Why do computers stop and what can be done about it?
In Proceedings 5th Symposium on Reliability in Distributed Software
and Database Systems, pages 3—12, Los Angeles, January 1986.

A. Grnarov, J. Arlat, and A. Avizienis. On the performance of soft-
ware fault-tolerance strategies. In Proceedings of the 10th International
Symposturn on Fault- Tolerant Computing. IEEE, 1980.

D. Haban and K. G. Shin. Application of real-time monitoring to
scheduling tasks with random execution times. IEEE Transactions on
software engineering, 16(12), December 1990.

B. E. Helvik. Modelling the influence of unreliable software in dis-
tributed computer systems. In Digest of papers : 18th International
symposium on fault-tolerant computing, pages 136—141. IEEE, 1988.

J. C. Knight and N. G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE Trans-
actions on Software Engineering, SE-12(1):96-109, January 1986.

20
11

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. J.-C. Laprie. Dependability evaluation of software systems in opera-
tion. IEEE Transactions on Software Engineering, SE-10(4):701-714,
November 1984.

J.-C. Laprie and K. Kanoun. X-Ware reliability and availability mod-
eling. IEEE Transactions of Software Engineering, 18(2):130 147,
February 1992.

B. Littlewood. Stochastic reliability-growth: A model for fault-removal
in computer programs and hardware designs. IEEE Transactions on
Reliability, R-30(4):313-320, October 1981.

J.D. Musa. Validity of execution-time theory of software reliability.
IEEE Transactions on Reliability, R-28(3):181-191, August 1979.

J.D. Musa. Software reliability data. Technical report, Bell Telephone
Laboratories, January 1980. Report obtainable from DACS, Rome Air
Development Centre, Rome, New York.

C. Y. Park. Predicting program execution times by analysing static
and dynamic program paths. Real-Twme Systems, 5:31 62, 1993.

J.L. Peterson. Petri net theory and the modeling of systems. Prentice-

Hall, 1981.

G. Pucci. A new approach to the modeling of recovery block structures.
IEEE Transactions on software engineering, 18(2):159-167, February
1992.

B. Randell. System structure for software fault tolerance. IEEE Trans-
actions on Software Engineering, SE-1:220-231, June 1975.

A. Ranganathan and S. Upadhyaya. Performance evaluation of
rollback-recovery techniques in computer programs. [EEE Transac-
tions on Reliability, 42(2):220-226, June 1993.

R. K. Scott, J. W. Gault, and D. F. McAllister. Fault-tolerant software
reliability modeling. IEEE Transactions of Software Enginecering, SE-
13(5):582-592, May 1987.

T. Shepard and J. A. M. Gagné. A pre-run-time scheduling algorithm
for hard real-time systems. IEEE Transactions on Software engineer-

ing, 17(7), July 1991.
L. Takacs. Stochastic processes. Methuen, 1962.

. J. Xu and D. L. Parnas. On satisfying timing constraints in hard-real-
time systems. IEEE Transactions on Software Engineering, 19(1):70
84. January 1993.

